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the application of the proposed work to the cross-disorder 
association studies of multiple diseases.  Conclusion:  Wheth-
er a variant is a disease risk factor, is subtype specific, or mod-
ifies disease features has important consequences for the 
interpretation and follow-up of genetic associations. Our 
framework provides a simple, systematic way to evaluate 
and describe associations involving such subtype-specific or 
modifier effects.  Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 The variability in clinical features observed for most 
complex genetic diseases is almost certainly due, at least 
in part, to genetic variation. Although there are poten-
tially numerous scenarios by which diverse genetic influ-
ences could lead to phenotypic heterogeneity, two main 
possibilities exist. First, a genetic marker may confer risk 
for only a specific subtype of the disease. This  subtype-
specific susceptibility gene , present in a subset of cases, 
confers liability for a form of illness with a distinct clini-
cal profile. Alternatively, clinical features such as age at 
onset or the presence or severity of specific symptoms 
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 Abstract 

  Objective:  We propose new statistical methods for analyz-
ing genetic case/control association data in which cases can 
be further classified into subtypes, for example, based on 
clinical features. The primary utility of our work is the ability 
to distinguish between subtype-specific and modifier ef-
fects of genetic variants within a single testing framework. 
 Methods:  A range of disease/subtype causal models are de-
fined for genetic variants involving subtype-specific and 
modifier effects. We present a log-linear modeling frame-
work enabling comparison between these causal models 
and selection of the best-fit model.  Results:  We evaluate and 
compare the analytic power and model selection perfor-
mance of the proposed work with standard two-group-
based association tests. Simulation studies demonstrate that 
our approach has similar or greater power than the tradi-
tional approach over a range of causal models. We also re-
port empirical findings about the impact of misspecification 
of subtype frequency during model selection, and extend 
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may be altered by a  modifier gene  which does not impact 
risk for the disease itself  [1] . By   loose analogy, one might 
imagine that wearing a seat belt is not  causally  related to 
whether an individual has a car crash, but that it does 
modify whether the accident is fatal.

  The distinction between a subtype-specific suscepti-
bility gene and a modifier gene is meaningful in the at-
tempt to understand the underlying genetic architecture 
of complex diseases and in selecting methods used to in-
vestigate these types of genes. Affected individuals ascer-
tained for genetic case/control association studies are of-
ten classified into subtypes based on clinical or other re-
lated features. Common, generic examples of ways in 
which subjects are often classified include early disease 
onset  [2] , a positive family history  [3] , broad versus nar-
row phenotype definition  [4] , treatment responsiveness 
or resistance  [5] , and neurophysiological outcomes  [6] . 
For specific diseases, classification by disease course, re-
currence, or symptomatology is also often of interest  [7–
10] . For example, patients with bipolar disorder may be 
further classified as type 1 or type 2, as psychotic or not, 
or as rapid or mixed cycling  [11] .

  Analogous to the analysis of disease subtypes, a com-
parable scenario arises when two or more studies of dif-
ferent but related diseases are combined, possibly sharing 
the same control sample. For example, whole-genome as-
sociation studies of schizophrenia  [12] , bipolar disorder 
 [13] , and major depressive disorder  [14]  all utilized a 
largely identical control sample. Genetic epidemiological 
studies  [15–17]  suggest there are likely risk genes that are 
shared across two or more of these disorders. Therefore, 
as well as detecting association of variants with one of 
these diseases, pleiotropic cross-disorder variants are 
also of much interest, as they might give etiological and 
nosological insights into the relationships between the 
disorders  [18] .

  In many instances, with this subtype information, in-
vestigators wish to explore whether or not disease-gene 
associations are stronger with respect to such subtypes 
beyond the search for disease susceptibility genes  [19, 20] . 
This is a perfectly reasonable approach unless the clinical 
features on which the subtypes are based are actually in-
fluenced by modifier genes. In this case, the variants of 
interest may be present in cases and controls at the same 
frequency, but in the absence of disease, they are unre-
lated to the features of illness under study. For example, 
age of onset of a disorder may be linked to the onset of 
puberty. Thereby, genes influencing developmental mat-
uration could modify age of onset in individuals already 
predisposed to the illness but have no disease-related ef-

fect on healthy controls, and stratification of subjects by 
age of onset for comparison against control subjects will 
not be fruitful. Thus, testing for modifier gene effects ne-
cessitates  case-only  analyses.

  Distinguishing between subtype-specific and modi-
fier gene effects is clearly vital to unravel the genetic ba-
sis of complex disorders, but as of yet, few analysis meth-
ods are available for addressing this problem. In this pa-
per, we present new statistical approaches to identifying 
and characterizing the genetic influences on observed 
variability within complex genetic diseases in the con-
text of typical genome-wide association studies. This 
novel method uses log-linear models to discriminate be-
tween the types of genetic effects at work across a range 
of possible causal models. Simulation studies demon-
strate the comparable power of the proposed approach 
over a series of two group-based standard association 
tests as well as its model selection performance under a 
large range of disease/subtype scenarios. We also discuss 
the impact of the model selection metrics and misspecifi-
cation of subtype frequencies in the proposed modeling 
framework.

  Methods 

 Disease/Subtype Models for Genetic Variants 
 To define disease/subtype causal models for genetic variants, 

we first introduce basic notations. Suppose that individuals af-
fected with disease  D  can be classified into those with the subtype 
of interest,  d *  , and those without,  d . The frequency of the subtype 
within affected individuals  P ( d *    �   D ) is labeled  s . This frequency 
can be estimated from given data if case ascertainment is inde-
pendent of subtype status, or it can be fixed to the population 
value if known. Unaffected controls (either screened or un-
screened) are labeled  U . For a genetic variant with alleles  A  and  a , 
the baseline frequency of  A  in controls is labeled  q  U . For conve-
nience, the effect of the  A  allele is parameterized as a frequency 
difference  �  between controls and two subtype cases.

  We define the following six disease/subtype causal models for 
genetic variants, as outlined in  table 1 . The  null  model represents 
a variant with no effect on either disease or subtype risk. In other 
words, controls and two case subgroups share the same allele fre-
quency  q  U . The  basic  model represents a variant that increases 
disease risk but has no effect on subtype. Such disease-suscepti-
bility variants without subtype effects can be detected in typical 
case/control association studies. The  subset  model represents a 
variant that in the general population specifically increases risk 
for the  d *   disease subtype only, not  d . In contrast, the  inv-subset  
model represents the opposite scenario, of a subtype-specific ef-
fect on  d , not  d *  . Often, one of the two subtypes is thought to rep-
resent a more ‘pure’ form of disorder, and, therefore, subtype 
analyses often focus on this one subgroup of interest. As such, the 
 inv-subset  model is included to illustrate what happens when this 
presumption is incorrect (e.g. for a gene that influences late-onset 
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disease only). The  modifier  model specifies a variant with no as-
sociation to disease  D , as the weighted allele frequency mean in 
subtypes  d  and  d *   is constrained to be equal to the baseline fre-
quency  q  U . Rather, the variant only influences risk for  d  versus  d *   
given the individual is affected,  D . Finally, the  gradient  scenario 
suggests that the variant increases risk for both subtypes, al-
though the population-level association for  d *   is stronger than for 
 d . This gradient model represents just one of many possible, more 
general models in which the allele frequency varies between all 

three groups. We note that definitions of the above disease/sub-
type causal models can be extended to cases of multiple subtype 
categories without difficulty.

  Log-Linear Modeling of Disease/Subtype Causal Models 
 We use a data analysis technique called log-linear modeling 

 [21]  to explicitly test and compare multiple disease/subtype caus-
al models, while considering all three groups of individuals,  U ,  d *  , 
and  d  jointly. Log-linear modeling is a powerful statistical tool 
which enables the exploration of relationships among more than 
two categorical variables and has been widely used for decades in 
multiple disciplines  [22] . First, we fit a series of log-linear models 
corresponding to the six disease/subtype models defined in the 
previous section;  table 2  shows the expected allele count param-
eters in three groups,  U ,  d  and  d *  , for each log-linear model. These 
parameter-constraints mirror the scenarios used to generate the 
data, with the exception of the  general  model (this replaces the 
 gradient  model, which is merely one possible instantiation of a 
general model that is not optimally characterized by any of the 
other five models, from  null  to  modifier ). Each model either has 
one, two or three estimated parameters (arbitrarily labeled  q  x ,  q  y  
and  q  z ), which specify the allele frequencies for the  A  allele in 
groups  U ,  d  and  d *  . We denote these estimated frequencies as  q  U , 
 q  d  and  q  d*   . If for group  i  =  U ,  d  or  d *  , the observed counts of alleles 
are   labeled  A  i    and  a  i  ,  then the log likelihood  L  for a model is

   �  i  = {U,d,d * }  A  i  log( q  i ) +  a  i  log(1 –  q  i ).

  Maximum likelihood parameter estimation is used to obtain 
the allele frequency parameters, along with two commonly used 
information criteria, the Akaike information criterion (AIC) and 
Bayesian information criterion (BIC). For a model with  k  param-
eters, the AIC is –2ln( L ) + 2 k ; the BIC is –2ln( L ) +  k ln( n ) where  n  
is the total number of observations. These information metrics 
can be used for selecting a disease/subtype causal model that best-
fits to given data  [23, 24] . Models with lower values for these met-
rics are to be preferred over models with higher values: unlike 
likelihood ratio tests (LRTs), non-nested models can be com-
pared. We thus select the disease/subtype log-linear model with 
the lowest AIC or BIC score as the causal model for the examined 
variant. In general, the BIC more heavily penalizes models with 
more free parameters than the AIC and so tends to select simpler 
models than does AIC  [25] . We also calculate a series of LRTs,  L  G , 
 L  B ,  L  M ,  L  S  and  L  I  that compare the test statistics for the goodness 
of fit of the null model with that of the five non-null models,  gen-
eral ,  basic ,  modifier ,  subset , and  inv-subset , respectively.  Table 3  
lists the nested model structure for the LRTs. Note that the gen-
eral LRT  L  G  can be computed using a simple test of independence 
on a 3  !  2 allele count table or using multinomial logistic regres-
sion, as well. 

 Test Strategy for Application in Whole-Genome Association 
Studies 
 We propose the following procedure for subtype analyses in 

the context of whole-genome and large-scale association studies, 
using the log-linear models described above. 
 (1) Start with all available markers, as opposed to pre-selecting a 

subset of markers on the basis of the primary case/control as-
sociation statistic. Such selection would effectively remove 
variants with modifier effects and bias towards markers con-
forming to the  basic  model. 

Table 1. D efinitions for the true simulated disease/subtype
models

True scenario P opulation frequency of A allele

U d d*

null qU qU qU
basic qU qU + � qU + �
subset qU qU qU + �
inv-subset qU qU + � qU
modifier qU qU – � (1 – s) qU + s �
gradient qU qU + � qU + 2 �

For  each of the three groups (U, d and d*), the allele frequency 
is parameterized in terms of qU (baseline frequency), � (effect of 
the variant), and s (subtype frequency).

Table 2. P arameterization of log-linear models, showing the with-
in-model constraints

Model Parameterization of A allele frequency for 
groups U, d and d*

qU qd qd*

null qx qx qx
basic qx qy qy
subset qx qx qy
inv-subset qx qy qx
modifier qx (1 – s) qys qx qy
general qx qy qz

Table 3. L ikelihood ratio tests constructed within the log-linear 
modeling framework

Test Super-model Sub-model d.f.

LG general null 2
LB basic null 1
LM modifier null 1
LS subset null 1
LI inv-subset null 1
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 (2) As the primary screen, for each variant fit the  general  and  null  
log-linear models to the data and calculate the 2 d.f. LRT sta-
tistic,  L  G . 

 (3) For variants whose primary screening  L  G  statistic is signifi-
cant at type I error rate  � , proceed to fit the full set of models: 
 general ,  basic,   subset ,  inv-subset  and  modifier  and  null . 

 (4) Identify the best-fit models based on AIC and BIC; if the two 
metrics select different models, report both. 

 (5) In order to control the marker-wise type I error at  � , report 
only the best-fit model and the p value from the general versus 
null LRT  L  G  calculated in step 2 as the primary result per 
marker. (Reporting the uncorrected p value for the best-fitting 
model, e.g.  L  G ,  L  B ,  L  M ,  L  S  or  L  I , would capitalize on chance and 
inflate type I error.) 
 A possible exception to the proposed test approach would be a 

study of a single disease in which the primary disease association 
test ( T  1 ) has already been performed and there are multiple sub-
types of interest. In this case, it might be preferable to select mark-
ers at step 2 on the basis of the subtype-only test  T  3  (i.e. simply any 
evidence of allele frequency differences between subtypes). In this 
instance, we are not interested in re-selecting SNPs that show 
strong affected/unaffected effects, implying the  basic  model, un-
der each subtype analysis, as these would already have been high-
ly ranked. The model comparison procedures described in steps 
3–5 can still be used to characterize whichever variants are select-
ed as being significant, as described above. That is, given a sig-
nificant difference between subtype allele frequencies, informa-
tion from controls will determine the best-fitting model overall.

  Series of Two-Group-Based Standard Association Tests 
 One approach to the subtype analysis of whole-genome asso-

ciation study is to conduct a series of association tests between two 
groups. We label the standard  case/control  test  T  1 . Two further 
subtype tests involve comparing a subset of cases against controls 
( T  2  ,   subset/control ) and the remaining cases ( T  3  ,   case-only ) to clar-
ify the subtype-specific effects. We evaluate and compare the 
power of these standard two-group-based association tests with 
our log-linear modeling-based selection approach. For the five 
non-null models introduced above,  figure 1  schematically illus-
trates the causal paths between genotype and phenotype, the re-
sulting pattern of allele frequency differences between the three 
groups ( U ,  d  and  d *  ) and a broad indication of how well the three 
basic tests  T  1 – T  3  might be expected to work (i.e. ‘as well as possi-
ble’, ‘not at all’, or ‘partially depending on the details of study de-
sign and genetic variant’). PLINK  [26]  was used to conduct the 
three pair-wise tests,  T  1 – T  3 .

  Basic Power Calculation and Simulation Study 
 For each of the five non-null disease/subtype models, we cal-

culate power for the standard pair-wise tests. For a sample of  n  
affected individuals ( D ) and  m  unaffected individuals, the corre-
sponding tests  T  1 – T  3  and their sample sizes are summarized in 
 table 4 . Power is calculated based on the expected non-centrality 
parameter for a  �  2  test of independence based on each implied 2 
 !  2 table. In all scenarios, we assume a total of 1,000 cases and 
1,000 controls; cases are further subdivided ( d *   vs.  d ) for a range 
of values for  s  (0.1  ̂    s   ̂   0.9 in 0.1 increments). To control for 

Causal path

Indirect association

No association

GG Gene variant

DD Affected case status

UU Unaffected/control

d*d* Affected individuals with subtype

dd Affected individuals without subtype

Case/control TCase/control T11 (D/U)(D/U)

Subset/control TSubset/control T22 (d*/U)(d*/U)

CaseCase--only subtype test Tonly subtype test T33 (d*/d)(d*/d)
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  Fig. 1.  Schematic illustrating some of the models considered here, and the standard tests often applied to sub-
type data. 
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multiple testing, a Bonferroni-corrected type I error rate is ap-
plied to  T  1 ,  T  2  and  T  3 .

  For a nominal type I error rate of  � , we also calculate a series 
of LRTs, listed in  table 3 . In particular, we are interested in the 
power of the 2 d.f. general LRTs,  L  G , as the statistic is used to select 
a subset of potential markers to fit a full set of log-linear models. 
For each disease/subtype model, we simulated 10,000 replicate 
datasets, fitting the same series of LRTs  L  G – L  I    and selecting the 
most parsimonious model based on the AIC and BIC (selecting 
one of the six models from  null  to  general  with the lowest value in 
each case). We also examined the distribution of best-fit models 
based on AIC and BIC only for datasets that show a significant  L  G  
test at some nominal  � . For each set of replicates, the value of  s  
used both to generate and analyze the data was set at 0.1–0.9, in 
0.1 increments.

  Important points to demonstrate are therefore (1) that  L  G  is an 
adequate statistic for ranking and selecting markers as associated 
with a single disease and/or subtype in some way, or with one or 
more of multiple diseases, and (2) that the model selection proce-
dure, applied to markers with a significant  L  G  test, will show ad-
equate discrimination under realistic scenarios. We also investi-
gate the impact of model misspecification, with respect to subtype 
frequency,  s .

  Results 

 Basic Power Calculation 
 We first examine the relative power of the general like-

lihood test  L  G  versus the standard tests  T  1 ,  T  2  and  T  3 , un-
der the five disease/subtype causal models:  basic, subset, 
inv-subset, modifier  and  gradient .  Figure 2  shows the re-
sults for a control allele frequency of  q  U  = 0.15 and a ge-

netic effect (allele frequency difference) of  �  = 0.05. The 
nominal type I error rate  �  is set at 0.001. The five panels 
a–e correspond to the five models:  basic, subset, inv-sub-
set, modifier  and  gradient , respectively. In all panels, the 
x-axis represents the simulated value of the subtype fre-
quency  s , while the y-axis represents the power of the ex-
amined tests,  L  G ,  T  1 ,  T  2 , and  T  3  (green stars =  L  G ; black 
circles =  T  1 ; blue crosses =  T  2 ; red plusses =  T  3 ). As previ-
ously described, the error rate  �  for  T  1 ,  T  2 , and  T  3  was 
corrected for three tests ( �  = 0.001/3), while the single test 
 L  G  requires no further correction. Note that for panel a 
(i.e. the  basic  model) the power of  T  1  after correction for 
multiple testing and  L  G  are identical (and therefore dif-
ficult to distinguish on the plot). We also plot the optimal 
power for the standard pair-wise tests of  T  1 ,  T  2  or  T  3  using 
gray circles. As summarized in  figure 1 , the case/control 
test  T  1  has the best power under the  basic  model, while 
the subtype/control test  T  2  and the case-only test  T  3  per-
form the best under the  subset  and the  modifier  model, 
respectively.

  Overall, the data presented in  figure 2  illustrates that 
in most scenarios the single general LRT  L  G  (a 2 d.f. test) 
performs at least as well as the basic tests  T  1 ,  T  2  and  T  3 . In 
particular, the LRT shows substantially increased power 
for the  inv-subset  model. Bonferroni correction for three 
independent tests is conservative, although  L  G  still com-
pares well if  T  1 ,  T  2  and  T  3  are only corrected for 2 inde-
pendent tests (data not shown). The competent perfor-
mance of  L  G  is clear when one considers the additional 
optimal power curve of the standard pair-wise tests plot-
ted in panels a, b and d (dotted lines with gray circles): 
these three models correspond directly to the assumed 
true disease/subtype model underlying  T  1 ,  T  2  and  T  3 , re-
spectively. For these three models only, we thus addition-
ally examined the power for the optimal corresponding 
test, without any correction for multiple testing. In all 
cases, we observed that the power of the general test is 
never, proportionally speaking, very low even compared 
to the anti-conservative procedure of selecting the best of 
 T  1 ,  T  2  or  T  3  uncorrected. In addition to the comparable 
power under all disease/subtype models, major advan-
tages of the single general LRT  L  G  are that it naturally 
handles the issue of multiple testing, and that it offers 
considerably increased power in the  inv-subset  scenario.

  Model Selection Performance 
 The primary motivation for our approach, however, is 

not to increase power to detect associations per se, but 
rather to provide a statistical basis for distinguishing be-
tween different classes of associated variant, in particular 

Table 4. D efinitions for the three standard tests of association

Test Cases Case
sample
size

Controls Control
sample
size

Case/control (T1) D n U m
Subset/control (T2) d* ns U m
Case-only (T3) d* ns d n (1 – s)

U  and D represent a group of controls and of cases, respec-
tively. Cases can be further divided into two groups, d* and d, 
which are a group of cases with the subtype of interest and those 
without the subtype. For the three standard two-group-based as-
sociation tests (i.e. T1, T2, and T3), the second (i.e. Cases) and the 
forth (i.e. Controls) columns list two of the four groups, U, D, d*, 
and d, that are tested for genetic association. The sample size of 
each test group is determined by three factors: (1) the number of 
controls, n; (2) the number of cases, m; and (3) the frequency of 
the subtype within affected individuals, s.
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  Fig. 2.  Power analysis results of the two-
group-based standard association tests 
( T1 ,  T2 , and T3). Panels  a–e  represent
the five true causal models:  basic ,  subset , 
 inv-subset ,  modifier  and  gradient . Black cir-
cles = power for  T1 , correcting for three 
tests; blue crosses = power for  T2 , correct-
ing for three tests; red plusses = power for 
 T3 , correcting for three tests; green stars = 
power for  LG , no correction necessary; 
gray circles = power for optimal model ( T1 , 
 T2  or  T3 ) under corresponding models 
only ( basic, subset  and  modifier ), without 
any correction. 
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  Fig. 3.  Simulation results. Power (for a type I error rate of 1  !  
10 –3 ) for the        LG  test under five different true scenarios (left to 
right) is shown in the top row; the bottom row shows the propor-
tion of times each model is selected as the best-fit model based on 

the BIC metric, given the replicate was significant for  LG  at p  !  1 
 !  10 –3 . Black circles =  basic ; blue crosses =  subset ; brown dia-
monds =  inv-subset ; red plusses =  modifier ; green stars =  general . 
See online supplementary figure 1 for full simulation results.     
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subtype-specific versus modifier effects. Here we use 
simulations to investigate the performance of our best-
fitting model selection approach based on AIC and BIC 
metrics. For the five true model scenarios,  figure 3  shows 
the power of the  L  G  test at a type I error rate of 0.001 in 
the top panels. The simulation parameters are the same 
as for the analytic power calculations above. The bottom 
panels show, for replicates in which the  L  G  test is signifi-
cant, the proportion of times each model is selected by the 
BIC metric (black circles =  basic ; blue crosses =  subset ; 
brown diamonds =  inv-subset ; red plusses =  modifier ; 
green stars =  general ).

  In general, power for the  L  G  test is lower for  modifier  
variants, as simulated under these particular conditions 
and sample sizes. The bottom panels show good discrim-
ination power of our selection approach, in general. That 
is, given a significant  L  G    test, the appropriate  basic ,  subset , 
 inv-subset , or  modifier  model is selected the majority of 
the time (60–98%). It is important to note that in many 
cases, the true model may be the most likely to be select-
ed, but it is far from selected 100% of the time. In par-
ticular, the  modifier  model shows a tendency to be con-
fused with subtype-specific effects for relatively rare sub-
types (e.g. under 10%). This is because the non-subtype 
cases (the majority of cases) only need show a small dif-
ference in allele frequency from controls in the opposite 
direction to the subtype, to equate the overall case and 
control means. We also note that, for this particular set 
of simulations, the  general  model is rarely selected, so 
performance under the  gradient  scenario is poor in terms 
of model selection. Naturally, as with any power calcula-
tion, all these conclusions are subject to the specific terms 
under which the data were simulated and the sample siz-
es: if  gradient  loci of very large effect existed, then these 
would be easily detected via the  L  G  test and selected via 
AIC and BIC measures.

  Online supplementary figure 1 shows the full simula-
tion results (www.karger.com/doi/10.1159/000327158) of 
our model selection performance; the full power curves 
and the best-fit models selected by AIC and BIC are 
shown both for all replicates as well as those that are sig-
nificant for  L  G  at p  !  0.001. Note that, in general, it is not 
a good strategy to select the AIC and BIC best-fit models 
for all examined variants: that is, under the null hypoth-
esis of no association the rate of non- null  best-fit models 
selected by AIC (in particular) and BIC might be substan-
tially higher than the type I error rate specified for  L  G . For 
this sample size, simulating under the  null  model, a non-
 null  model was selected approximately 1% of the times 
based on BIC, and the rate was much higher for AIC. This 

highlights the importance of first using the  L  G  statistic to 
restrict model selection to a subset of putatively associ-
ated SNPs. Overall, these simulations suggest that the 
BIC metric is to be preferred over the AIC; it tends to dis-
play a conservative bias under most conditions, whereas 
the AIC displays a liberal bias, in terms of selecting more 
complex models. However, the performance of different 
model selection metrics can be affected by the size of the 
data samples and specific simulation settings  [27] . There-
fore, we suggest to explore both AIC and BIC scores in the 
model selection procedure. Of course, these two metrics 
do not provide a perfect means to test and select the dif-
ferent causal models outlined in this article; nonetheless, 
we would argue that performance is likely to be good for 
moderate effect sizes in large samples that pass the  L  G  test 
at a stringent threshold, and that it is better than ad hoc 
comparisons of p values from the  T  1 ,  T  2  and  T  3  tests.

  As illustrated in  figure 1 , there is not a direct corre-
spondence between the implied causal models and the 
power of the three correlated tests,  T  1 ,  T  2  and  T  3 . In prac-
tice, the case/control test  T  1  will typically be performed 
first to select a smaller set of SNPs for subtype analysis 
(e.g. in the context of a whole-genome association study). 
In this case, the interpretation of the subsequent subset/
control test  T  2  is not straightforward, because the statis-
tics from the  T  1  and  T  2  tests will be highly correlated even 
under the null model depending on the relative frequen-
cy of  d  and  d *  . Simply noting whether or not the  T  2  p 
value (based on a smaller sample) is larger or smaller than 
the  T  1  p value is not a sound basis for concluding any-
thing vis-à-vis subtype-specific or modifier effects. Dis-
similarly, under the null hypothesis of no subtype-specif-
ic association,  T  3  is independent of  T  1 , which makes the 
joint interpretation of p values from  T  1  and  T  3  easier. 
However, by itself a significant  T  3    result is consistent with 
a number of distinct causal models: in particular, it pro-
vides no grounds for deciding between subtype-specific 
and modifier models of gene effect. In contrast, our mod-
eling framework enables to explicitly test and compare a 
number of causal models and to distinguish between 
modifier and subtype-specific effects.

  Misspecification of Subtype Frequency 
 Whether an effect is classified as a modifier versus a 

subtype-specific effect can clearly depend on accurately 
specifying the value of  s , the subtype frequency ,  in the 
general population of individuals with disease. In a large 
sample of cases, where ascertainment is independent of 
subtype status, then  s  can simply be estimated from the 
sample. If the ascertainment scheme means that the sam-
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ple estimate of  s  will be biased from the true population 
value, then  s  should be fixed to an independent estimate 
of its true population value when fitting the  modifier  
model. For example, if the subtype is drug resistance, and 
drug-resistant cases are more likely to be enrolled in the 
study, this will bias the sample estimate of  s . In general, if 
one subtype is more severe, it may affect ascertainment 
via Berkson’s bias  [28] .

  This issue is particularly likely to arise if ‘cases’ in fact 
comprise two distinct disorders, such as bipolar disorder 
and schizophrenia, combined from two original case/
control studies. In this case, the relative proportion of bi-
polar to schizophrenic patients will simply reflect the 
sample size of the two original studies. Also, if there is a 
large sex difference in the rate of the subtype, then X 
chromosome markers should be analyzed separately for 
males and females   with different values of  s  specified.
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  Fig. 4.  Model misspecification, for SNPs based on AIC and BIC model selection metrics. Gray circles =            null ; 
black circles =  basic ; blue crosses =  subset ; brown diamonds =  inv-subset ; red crosses =  modifier ; green stars = 
 general .  a ,  b  AIC and BIC for SNP 1.  c ,  d  AIC and BIC for SNP 2.                     
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  Given that the choice of modifier versus subtype-spe-
cific models is affected by the value of  s , it is advisable to 
perform a sensitivity analysis in which  s  is varied and its 
impact on model selection is assessed; in other words, to 
ask how tolerant the result is to possible misspecification 
of  s .  Figure 4  plots the AIC and BIC scores for the two 
simulated  modifier  SNPs (labeled 1 and 2) as a function 
of different values of  s . The true value of  s  in data genera-
tion was 0.5, but for log-linear model fitting,  s  was set to 
vary between 0.1 and 0.9. Panels a and b represent the AIC 
and the BIC scores for SNP 1; panels c and d represent 
AIC and BIC for SNP 2 (gray circles =  null ; black cir - 
cles =  basic ; blue crosses =  subset ; brown diamonds =  inv-
subset ; red crosses =  modifier ; green stars =  general ).

  In all cases, at  s  = 0.5 (the simulated true value) the 
 modifier  model gives the lowest AIC and BIC compared 
to other models. However, as the misspecification of  s  
arises, the AIC and the BIC score of the modifier model 
tends to arise, as well. Note that the AIC and the BIC 
scores of other non-null models (i.e.  basic, subset, inv-
subset,  and  general ) are invariant regardless of the value 
of  s , because their log-linear model fitting does not de-
pend on  s  as summarized in  table 3 . Calculating how the 
 modifier  AIC and BIC metrics change relative to the oth-
er models (which do not depend on  s ) will indicate how 
robust the designation as a modifier is. The precise profile 
will depend on the frequency of the variant and the na-
ture of the effect. In general, if a change in  s  of only a few 
percent would alter the model selection (e.g. if a different 
model, e.g.  general  or  subset , becomes more likely based 
on either AIC or BIC) it is not advisable to make any 
strong conclusions regarding the modifier effects as the 
best causal model for the examined variant.

  Application to Cross-Disease Meta-Analysis 
 Finally, we consider the joint analysis of data from 

studies of multiple diseases, rather than subtypes of a sin-
gle disease. Here, we focus on independent case/control 
samples for five different diseases, subsets of which are 
expected to share common genetic risk factors. For ex-
ample, the Psychiatric GWAS Consortium (PGC) com-
bines genotype data from studies of attention deficit 
 hyperactivity disorder, autism, bipolar disorder, major 
depression and schizophrenia. As well as detecting asso-
ciation of a variant with one of these diseases, pleiotropic 
cross-disorder variants are also of interest, as these might 
give etiological and nosological insights into the relation-
ships between diseases  [18] . We assume that the standard, 
‘within-disease’ analyses have already been performed, 
but that one question we now want to ask is: by pooling 

these data across disorder, can we detect novel loci that 
harbor variants that impact two or more of the five dis-
orders, but were missed by the smaller individual disor-
der analyses?

  In addition to standard meta-analytic approaches, one 
approach to analysis is to use a log-linear modeling ap-
proach describe above. Under the alternate model, 10 al-
lele frequencies would be estimated, for cases and con-
trols separately within each of the five studies. Under the 
reduced model, only five allele frequencies would be esti-
mated, with case and control estimates constrained to be 
similar within each study. The 5 d.f. LRT between these 
two models represents an omnibus test of any associa-
tion, which does not assume a similar relative risk across 
groups and allows for different background frequencies.

  We assessed the power of this approach by simulation. 
We assumed that a particular variant increases risk for 
only two of the five disorders (labeled  A  and  B  of  A – E ). 
This represents a ‘worst-case scenario’ from the point of 
view of the secondary cross-disease analysis. For each 
disease, we simulated 2,000 independent case/controls 
pairs. The genotypic relative risk was set at 1.2; risk allele 
frequency was randomly generated following a uniform 
distribution, truncated at 5 and 95%. The power of the
5 d.f. test compares favorably to some of the other obvious 
alternatives. For a nominal type I error rate of 0.01, the 
power to detect the effect within a single study, either  A  
or  B  ( N  = 2,000 + 2,000), is 80%. At a similar overall type 
I error rate, the power to detect an effect in both  A  and  B  
(and therefore conclude pleiotropy) is 88% (i.e. p  !  0.1 in 
both studies, implying a joint 0.1 2  = 0.01 type I error). If 
cases and controls from  A  and  B  were pooled ( N  = 4,000 
+ 4,000), power for the single test is 94%. However, none 
of these tests account for the fact that we are considering 
five diseases, and we do not know a priori which diseases, 
if any, show association. By contrast, the power of the
5 d.f. omnibus test, which does account for all multiple 
testing across diseases, is 87%. Even though only two of 
the five diseases show the association, here we have great-
er power than for a single study test of association of ei-
ther  A  or  B . Naturally, if three or more of the five diseas-
es showed association, we would expect the omnibus test 
to perform even better.

  Discussion 

 Heterogeneity in the clinical presentation of complex 
genetic diseases suggests the existence of subtype-specif-
ic and/or modifier genes. Identifying and distinguishing 
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between these types of genes is an important next step in 
understanding disease pathology. We have outlined a set 
of log-linear models for testing and describing subtype-
specific and modifier effects in the context of genetic 
case/control association studies. Our approach provides 
a single testing framework that specifically distinguishes 
subtype-specific from modifier effects. Of note, recent 
work by Huang et al.  [29]  applied our model selection-
based testing framework to the cross-disorder analysis of 
three major psychiatric disorders and identified the ge-
netic variants with subtype-specific effects of genome-
wide significance. As discussed in the work  [29] , whether 
or not a gene variant is a modifier, etiologically distinct 
from a basic or subtype-specific disease variant, could 
have important consequences in how one approaches 
subsequent follow-up.

  Genome-wide association studies have successfully 
identified numerous loci at which common variants in-
fluence disease risk or quantitative traits. Despite these 
successes, the variants identified by these studies have 
generally explained only a small fraction of the heritable 
component of disease risk, and have not pinpointed with 
certainty the causal variants at the associated loci. Fur-
thermore, the mechanisms of action by which associated 
loci influence disease or quantitative phenotypes are of-
ten unclear, because we do not know through which genes 
the associated variants exert their effects or because these 
genes are of unknown function or have no clear connec-
tion to known disease biology. Thus, the initial set of ge-
nome-wide association studies serve as a starting point 
for future genetic and functional studies.

  Some of the variability often observed in association 
signals across studies could be due to subtype specificity. 
A gene conferring risk for any subtype is particularly 
likely to show inconsistent patterns of association in stan-
dard case/control studies when ascertainment varies with 
respect to that subtype (for example, if some studies over-
sampled severely affected, hospitalized patients, whereas 
others did not). It is important to note that different SNPs 
in the same gene, even in the same linkage disequilibrium 
block, may be associated but with different causal models 
reported as the most likely. Naturally, this approach will 
be more powerful when looking at the true causal variant 
rather than at markers that are only indirectly associated. 
In this instance, the SNP with the strongest  L  G  test statis-
tic is likely the best SNP upon which to base model selec-
tion. However, as with the issue of correctly specifying 
the subtype frequency,  s , one should reserve strong judg-
ment in the absence of a consistent overall pattern of re-
sults.

  A subtype might represent a co-morbid disorder, or a 
phenotype which can exist in individuals without dis-
ease. For example, if the subtype were bipolar disorder 
with co-morbid panic disorder, one would not be able to 
distinguish between a subtype-specific effect for bipolar 
disorder versus a main, basic effect for panic disorder (i.e. 
where the variant is completely unrelated to bipolar dis-
order, per se). However, if one were to sample all four 
combinations of individuals with and without bipolar 
and panic disorder, it would be easy to extend the ap-
proach presented here to distinguish between this larger 
set of possible models. A further issue in interpretation is 
that different subtypes will often be correlated with each 
other. For example, if psychotic bipolar patients are more 
likely to be early-onset and male, it may not be clear 
whether a subtype-specific effect relates to psychosis, age 
at onset or sex. One advantage of the simple case-only 
test,  T  3 , is that other subtypes can easily be included as 
covariates, for example, in a logistic regression context, 
whereas this would not be straightforward for the subset/
control test,  T  2  (as the covariates would not be defined in 
controls). Our log-linear modeling approach could be ex-
tended to incorporate case-only covariates (i.e. other sub-
types and continuous variables). Similarly, this approach 
could be easily extended to model genotype or haplotype 
frequencies instead of allele frequencies, or to be re-pa-
rameterized in terms of genotypic relative risks and in-
clude affected offspring/parent trio data.

  Overall, this novel method offers the capacity to con-
currently assess subtype-specific and modifier gene in-
fluences to facilitate the goal of better understanding the 
pathological mechanisms underlying the heterogeneity 
of complex disorders. We have outlined possible next 
steps that may help accelerate progress from genetic stud-
ies to the biological knowledge that can guide the devel-
opment of predictive, preventive, or therapeutic mea-
sures.
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