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Abstract
Objective: To examine the properties of the structured
association approach for the detection and correction of
population stratification. Method: A method is devel-
oped, within a latent class analysis framework, similar to
the methods proposed by Satten et al. (2001) and Prit-
chard et al. (2000). A series of simulations illustrate the
relative impact of number and type of loci, sample size
and population structure. Results: The ability to detect
stratification and assign individuals to population strata
is determined for a number of different scenarios. Con-
clusion: The results underline the importance of careful
marker selection.

Copyright © 2004 S. Karger AG, Basel

Background

Population stratification refers to a recent mixture of
subpopulations which may differ in allele frequencies at
many loci across the genome. A stratified sample is there-

fore one in which discrete subpopulations that do not
interbreed as a single randomly-mating unit are pooled
together. The early population genetic work on popula-
tion stratification was primarily concerned with its im-
pact on genotypic frequencies and the evolutionary pro-
cess [1], although subsequently its potential impact in dis-
ease-gene association studies was highlighted [2]. If cases
and controls are not matched for ethnic background, pop-
ulation stratification effects can lead to spurious associa-
tion. Although the primary focus was on population strati-
fication generating type I, or false positive errors, stratifi-
cation can also reduce power (that is, to increase type II
errors) if the stratification effect ‘masks’ the trait locus
effect.

A stratified sample will display certain characteristic
‘signatures’, both at single loci and also across unlinked
loci. At a single locus, stratification induces a non-inde-
pendence between maternal and paternal alleles, i.e. Har-
dy-Weinberg disequilibrium (HWD). Across unlinked
loci, stratification can induce a similar non-independence
of alleles, i.e. linkage disequilibrium (LD). Two ap-
proaches to detecting these signatures, in order to correct
for stratification, have been suggested, now labelled ‘ge-
nomic control’, e.g. [3], and ‘structured association’, e.g.
[4, 5]. Both approaches require multilocus genotype data
from across the genome for each individual in the sample.
The essence of the genomic control approach is that popu-
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lation stratification leads to a systematic ‘over-dispersion’
of ¯2 statistics in the disease-gene association test, an
effect that can be estimated and adjusted for. Structured
association attempts to assign individuals to subpopula-
tions and to test for association conditional on subpopula-
tion membership. Pritchard et al. [4] developed the
STRUCTURE program based on a Bayesian framework,
and Satten et al. [6] adopted a latent class analysis (LCA)
[7] approach within a maximum-likelihood (ML) frame-
work, using the E-M algorithm. Although Bayesian and
ML approaches differ in the statistical apparatus em-
ployed, both share similar underlying models.

Structured association offers certain advantages over
the genomic control approach. First, any structure in a
sample is of intrinsic interest – rather than simply com-
puting a single inflation factor, it is informative to classify
individuals into meaningful groups. Structured associa-
tion can also handle allelic heterogeneity between subpop-
ulations – subpopulation membership can be entered as
an interaction term as well as a covariate in any subse-
quent association test. Finally, unlike genomic control
methods, which merely provide an average correction fac-
tor, structured association does not assume that the genet-
ic distance between two groups is constant across the
genome.

The present work also adopts a structured association,
LCA-based approach similar to Satten et al. [6], albeit
with several extensions. Furthermore, we present some
simple simulation results that illustrate the conditions
under which this method might be expected to perform
effectively. Broadly speaking, these results conform with a
recent, more comprehensive study of the informativeness
of genetic markers for inference of ancestry [8]. Recent
work has shown that even modest levels of stratification
that might go undetected by standard applications of
genomic control or structured association can bias the
results of large association studies [9]. Similarly, another
recent study assessed stratification empirically, by analyz-
ing data from 11 case-control and case-cohort association
studies [10], finding that a larger number of markers than
previously thought is necessary to detect even moderate
levels of stratification. These results make even more
pressing the need to assess the properties of structured
association methods and develop guidelines for their use
in large-scale association studies: although the number of
markers used is one important variable, the results below
illustrate some of the other determinants of success for
this approach.

Methods

A population is assumed to consist of K hidden sub-populations.
The basic model assumes that each individual belongs to one and
only one sub-population, that mating occurs randomly within each
sub-population and that these sub-populations may vary in allele fre-
quencies at loci all across the genome. The aim is to breakdown a
population that, as a whole, potentially displays Hardy-Weinberg
and linkage disequilibrium across unlinked loci into a number of sub-
populations, such that within each sub-population there is Hardy-
Weinberg and linkage equilibrium. In practice, the markers do not
necessarily need to be completely unlinked: they must be sufficiently
distant to be in linkage equilibrium within subpopulation (about
1 cM in homogeneous populations).

The aim of latent class analysis is to probabilistatically assign
individuals to class C of K possible classes on the basis of their
responses to multiple variables. In the present context, each class C
corresponds to a potential population stratum; individuals’ responses
correspond to sets of genotypes measured on unlinked loci, G. The
LCA model involves three inter-related sets of probabilities P (C AG ),
P (G AC ) and P (C ). For a specific K, the main values to be estimated
are the posterior class probabilities P (C AG ): the probability that an
individual belongs to a subpopulation conditional on genotypic con-
figuration. The E-M algorithm [11] is used to iteratively calculate
P (C AG ) by estimating P (G AC ) and P (C ). P (G AC ) represents class-
specific allele frequencies – the probability that an individual picked
from a certain class has a certain allele at a particular locus. P (C ) are
the prior probabilities of class membership: the probability that an
individual picked at random belongs to class C irrespective of G. For
K 1 1, P (C ) represents the mixing proportions of the various classes.
Critically, P (C AG ) are calculated under the assumptions of Hardy-
Weinberg and linkage equilibrium holding within each class.

The posterior probability of individual i belonging to class j is
P (C = j AGi ). The relative frequency in class j of allele k at locus l is
P (Gl = k AC = j ). (Note that when G is indexed by an i subscript, it
refers to an individual’s multilocus genotype; when G is indexed by l,
it refers to a single locus in the entire population.) The E-M algorithm
proceeds in two steps; the expectation, or E-step, involves calculating
the values of P (C ) and P (G AC ) implied by P (C AG ); the maximisa-
tion, or M-step, involves recalculating P (C AG ) given the new esti-
mates of P (C ) and P (G AC ). These two steps then iterate until conver-
gence. Details of the method are presented in Appendix 1.

As well as estimating P (C AG ) for K = 1, 2, ... one wants to ask:
does a more complex model (i.e. higher K ) provide a significantly
better description of the data? In particular, is there evidence of any
stratification (i.e. K 1 1)? As different solutions involve different
numbers of unique parameters and are not nested, the Akaike Infor-
mation Criterion (AIC) [12], defined as minus twice the log-likeli-
hood plus twice the number of model parameters, is used to evaluate
different models. There are K – 1 non-redundant parameters in P (C )
and ™l (K (nl – 1)) in P (G AC ) if locus l has nl alleles. The lowest AIC
solution is taken to be the most parsimonious and best-fitting expla-
nation of the data. In the absence of any a priori considerations
regarding population substructure, only the P (C AG ) from the K-solu-
tion with the lowest AIC should be used as covariates in any subse-
quent association analysis. Although the AIC is commonly used in
the context of LCA, it does display a tendency to over-estimate K.
However, in the present context (deriving a solution in order to cor-
rect for population stratification in subsequent association analysis)
this is not of particularly great concern – it will lead towards more
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conservative tests, but this is probably preferable to under-estimating
K in any case.

Admixture Models
So far we have assumed a simple population genetic model: K

distinct subpopulations of varying size that differ in allele frequen-
cies at unlinked markers; also that Hardy-Weinberg and linkage equi-
librium exist within each subpopulation. A more general and realistic
model allows for admixture between subpopulations. That is, we may
wish to characterise as admixed individuals who have descended
from two or more other subpopulations also seen in the sample, rath-
er than assuming that a further distinct class exists. Such a model is
potentially more powerful and more revealing of hidden population
structure.

Admixture is modelled in terms of a finite number of derived
classes (CD ) that represent an admixture of one or more ancestral
classes (CA ). Considering discrete sets of admixture proportions by
constraining possible proportions to a 1/r resolution, where r is speci-
fied by the investigator, we can enumerate all possible derived classes
for a given number of ancestral classes. For example, if r = 2 and
there are 3 ancestral classes, six derived classes are implied. The
matrix

£ = ! 1.00
0.50
0.00
0.50
0.00
0.00

0.00
0.50
1.00
0.00
0.50
0.00

0.00
0.00
0.00
0.50
0.50
1.00

"
represents the mixing proportions of the three ancestral classes (col-
umns) in the six derived classes (rows). Three of these derived classes
are pure in the sense that they are derived from only one ancestral
class, the other three derived classes are admixed. Reading across
rows, the elements of £ represent the proportion of an individual’s
genome that is derived from each ancestral class.

Counting individuals, rather than alleles, is still straightforward:
individuals are counted directly into derived classes. If I () represents
a count of individuals, the prior derived class probabilities are there-
fore simply estimated as P (CD = d ) = I (CD = d )/N where I (CD = d ) =
™iP (CD = d AGi ). However, rather than directly counting alleles into
derived classes, the two layers of classes must now be considered. Of
primary interest are the parameters for the derived classes, which
correspond to the simple classes considered previously: posterior
probabilities are only calculated for the derived classes, P (CD AG ).
The presence of the ancestral classes effectively places constraints on
how the allele-counting step proceeds, however. Details of the meth-
od are presented in Appendix 2.

Other Extensions
Fixing P (C AG )
It may sometimes be desirable to allocate individual i to latent

class j, by fixing P (C = j AGi ) to 1 and P (C 0 j AGi ) to 0, rather than
estimating these values. This procedure allows the likelihood to be
calculated for any classification of individuals based on external cri-
teria (e.g. self-reported ancestry). Additionally, this procedure can be
used to ‘anchor’ the solution: for example, if the sample contains a
few ‘prototypical’ individuals (i.e. those with unambiguous ethnic
group information) then these individuals can be fixed to specific
classes. This is particularly useful when more complex admixture
models are specified.

Haploid Organisms and X Chromosome Data
Although the method above applies to diploid genotypic data, a

straight-forward modification enables the analysis of haploid organ-
isms, or of X chromosome data in males. In particular, if A () repre-
sent allele counts, only one allele at each locus is now counted in the
E-step A (Gl = k AC = j ) = ™iP (C = j AGi )D1 and so the class-specific
allele frequencies are now P (Gl = k AC = j ) = A (Gl = k AC = j )/I (C = j )
whilst in the M-step, the calculation of P (C AG ) becomes P (C = j AGi )
= P (C = j ) ¶l P (Gl = ki1 AC = j )/(™j)P (C = j) ) ¶l P (Gl = ki1 AC = j) )).
(See Appendix 1 for more details on the basic method.)

The Hardy-Weinberg Equilibrium Assumption
Population stratification is not the only cause of Hardy-Weinberg

disequilibrium. One other potentially common cause is selective
genotyping error. Consider the scenario in which heterozygous indi-
viduals are more likely to have a missing genotype. This loss of hete-
rozygosity is not likely to lead to spurious association – but might it
lead to ‘spurious stratification’. That is, the current method might
take HWD due to missing heterozygous genotypes as evidence of
stratification and therefore favour a spurious K 1 1 solution.

This possibility was investigated by simulation: 10 replicate
homogeneous datasets of 400 individuals and 40 SNPs (equal allele
frequencies) were simulated. Heterozygotes were designated missing
with probability 0, 25, 50 and 75%. Therefore, in the last (unrealisti-
cally extreme) condition (75% missing) substantial deviations from
HWE were observed. The data were analysed for K = 1 and K = 2
solutions in the standard manner. The approach was also modified,
to relax the within-class HWE assumption, by treating genotypes as
the unit of response rather than alleles (i.e. equivalent to assuming all
individuals to be haploid and that each genotype is a unique allele).

As table 1 illustrates, a large percentage of the heterozygotes must
be missing in order to favour a two-class solution (i.e. positive values
of AIC (K = 1) – AIC (K = 2)) – it is very unlikely that this level of
genotyping failure would occur in practice for all markers. Also, the

Table 1. The impact of selective genotyping
failure: relaxing the within-class HWE as-
sumption

Missing
A1A2

AIC (K = 1) – AIC (K = 2)

HWE assumed HWE relaxed

0% –72.63 –68.01
25% –52.25 –60.78
50% 13.41 –69.79
75% 119.76 –72.55

The figures represent the difference in
AIC for a K = 1 and a K = 2 solution: Positive
values therefore indicate that stratification
has been detected (i.e. a K = 2 solution is
favored over a K = 1 solution).
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specification of equal allele frequencies represents a ‘worst-case sce-
nario’ (i.e. it gives the highest possible frequency of heterozygotes).
Furthermore, when the option to relax the within-class HWE as-
sumption was implemented, the AIC difference remained invariant
to the marker HWD. Similar results were obtained when different
genotyping artefacts were simulated to induce the HWD: for exam-
ple, some proportion of heterozygotes being called as homozygotes.

Genetic Outlier Detection
A related goal to detecting subpopulations within a sample is the

detection of population outliers using genetic background informa-
tion. That is, the sample may be relatively homogeneous except for
one or two individuals. These individuals would not constitute a
class by themselves – but it might be of interest to identify such indi-
viduals before embarking on any other analyses. A proposed method
is first to calculate the sample log-likelihood ln L0 for K = 1. Then, for
each individual i, the sample log-likelihood ln Li is calculated for K =
2 but with individual i fixed to class 2 (i.e. fix P (C = 2 AGi ) = 1) and all
other individuals fixed to class 1 (i.e. fix P (C = 1 AGj ) = 1 for j 0 i ).
The difference ln Li – ln L0 is a measure of genetic distance and can
be inspected to identify genetically outlying individuals. A similar
approach has been proposed by Fisher et al. [13].

Diagnostic Statistics
Several diagnostic statistics can be used to aid the model-fitting

process. An inter-class genetic distance matrix using Nei’s measure of
genetic distance [14] is calculated from the class-specific allele fre-
quencies. Nei’s genetic distance between two classes, j1 and j2, for N
loci is calculated

dNei =

–ln 
™ N

l = 1™k [P (Gl = k AC = j1)P (Gl = k AC = j2)]/N

√™ N
l = 1 ™k [P (Gl = k AC = j1)2] ™ N

l = 1 ™k [P (Gl = k AC = j2)2]/N

It is especially convenient to apply a multidimensional scaling tech-
nique to the distance matrix, in order to obtain a visual representation
of the class structure. The class-specific allele frequencies are also given
in the output of the computer program L-POP, which allow the calcu-
lation of other useful summary statistics such as the FST index, repre-
senting a general measure of genetic differentiation in the sample.

Additionally, an ‘entropy’ measure is calculated for each individ-
ual, to indicate how well that individual has been classified in the
final solution. Entropy for individual i is calculated by summing over
all j classes 1 to K : –™ K

j = 1 P (C = j AGi )ln P (C = j AGi ) where P (C = j AGi )
1 0. The measure ranges between 0 and 1, where a lower value repre-
sents a better classification.

Inter-class Nei genetic distances are also calculated for each locus
separately. These statistics can be useful for identifying which loci are
contributing to solutions with K 1 1. Typically, one would expect all
loci to contribute approximately equally. In cases where only a cou-
ple of loci stand out as contributing much more than the others, it is
worth investigating the positions of these loci – it might be indicative
of the loci being tightly linked. In this case, at least one of the markers
should be removed from the dataset. Class-specific locus-specific
genetic distances are also calculated (i.e. comparing class j against all
other classes for that locus).

It may also be of interest to compare different solutions against
each other, or against an external classification scheme. For each
solution, the data can be partitioned by assigning each individual to a
single class based on highest posterior probability; for each pair of

solutions a two-way contingency table can be constructed. The
adjusted RAND index [15] is a measure of agreement specifically
designed to compare partitioning schemes of data from clustering
methods; importantly, this measure is able to compare solutions with
different numbers of classes. The adjusted RAND index varies
between 0 and 1 (where 0 represents no agreement and 1 represents
complete agreement) and is calculated

RAND = 

™i,j #nij

2
$ – !™i #ni.

2
$ ™j #n.j

2
$" % #n

2
$

1
2
!™i #ni.

2
$ + ™j #n.j

2
$" – !™i #ni.

2
$ ™j #n.j

2
$" % #n

2
$

where nij is the observed count for individuals classified into class i
for the first solution and class j for the second solution; the marginal
counts for the first and second solutions are represented as ni. and n.j
respectively.

Correction for Stratification in Association
Analysis

Whereas the approach of Satten et al. [6] combines the
test of association for binary disease traits with the detec-
tion of stratification, the current approach separates these
two aspects of the problem. The most simple strategy is to
use posterior probabilities P(C = 1 AG) to P (C = K – 1 AG )
from the best-fit solution as covariates in whatever test of
association is required. Alternatively, individuals can be
assigned to discrete classes on the basis of their highest
P(C AG ) (although this can induce a bias if the highest pos-
terior probabilities are not very near 1).

We have developed an approach that evaluates the
likelihood of observing an individual’s genotype condi-
tional on trait score, P (G AX). This ‘conditioning-on-trait
values’ approach has been previously adopted in the con-
text of complex segregation analysis [16] and variance
components linkage [17]. To allow for stratification ef-
fects, association is modelled conditional on belonging to
class j of K discrete classes. For each individual, the prob-
abilities of belonging to each class will be the posterior
probabilities produced by a method such as the one
described above, using genetic background information.
Alternatively, these ‘probabilities’ could be binary vari-
ables coded 0/1 based on some other classification
scheme, such as self-reported ethnicity. The posterior
probabilities are denoted P (C AG ). The class-conditional
likelihood will be based on P(G AX,C ). The overall likeli-
hood will be the weighted sum ™jP (G AX,Cj)P(Cj AG ) there-
fore.

The model is parameterised in terms of class-specific
additive genetic values (aj ), dominance deviations (dj)
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and allele frequencies (pj). Mean-centred class-specific
genotypic means are calculated

Ì11 A j = aj – (aj (pj – qj ) + 2pjqj dj )

Ì12 A j = dj – (aj (pj – qj ) + 2pjqj dj )

Ì22 A j = – aj – (aj (pj – qj ) + 2pj qjdj )

and class-specific genotype frequencies P(G11 AC ),
P(G12 AC) and P (G22 AC ) are calculated p j

2, 2pjqj and q j
2.

The trait must be standardised prior to analysis using the
population mean and variance, which must either be esti-
mated from an unselected sample or obtained from other
sources. The residual trait variance is

Û 2
R = 1 – ™

j

P (Cj )(P (G11 ACj )Ì 2
11 A j + P (G12 ACj )Ì 2

12 A j + P (G22 ACj )Ì 2
22 A j )

where P (Cj) is the prior probability of belonging to class j,
calculated by summing posterior probabilities over all N
individuals in the sample, ™i P(Cj AG )/N. Applying Bayes
Theorem to P (G AX,C ), the likelihood of observing geno-
type Gi is the mixture of likelihoods summed over all pos-
sible classes weighted by the posterior class probabilities

L (Gi AXi ) = ™
j

P (Xi AGi, Cj )P (Gi ACj )
™F P (Xi AGF, Cj )P (GF ACj )

P (Cj AGi )

where the sum F is over all genotypes. For individual i,
the probability of observing the trait score conditional on
genotype and class is given by the normal or logistic densi-
ty function, depending on whether the trait is continuous
or binary. By either fixing or equating parameters, likeli-
hood ratio test statistics can then be constructed between
null and alternate models as minus twice the difference in
log-likelihood. Simulation results show that this formula-
tion is equivalent to a more standard regression-based
approach in most circumstances and is more powerful
when the continuous trait is non-normal, or if the sample
has been selected on the basis of extreme trait values [18].
This basic approach can be easily extended to multiallelic
or haplotype analysis, most simply by comparing each
specific allele or haplotype versus all others (and correct-
ing for multiple testing by use of permutation procedures,
if so desired).

Comparison with STRUCTURE

As noted above, the present model is similar to the ba-
sic underlying approach used in the STRUCTURE pro-
gram. We performed some simple simulations to investi-
gate the equivalence of the two methods (using Version
2.1 of STRUCTURE). STRUCTURE offers more than

Table 2. A comparison of L-POP and STRUCTURE: Determining
K in L-POP

Stratification Loci K = 1 K = 2 K = 3

N 20 0.00 5.00 8.58
50 0.00 5.54 18.22

100 0.00 11.25 31.50

Y 20 338.10 11.59 0.00
50 1,306.59 2.73 0.00

100 3,001.63 0.00 32.64

The values represent the AIC values for a K = 1, K = 2 and K = 3
class solution minus the minimum across each row of these three
values (i.e. the best-fit solution will have a value of 0). The K = 1
solution was correctly selected in all cases when there was no stratifi-
cation. In contrast, when there was stratification (such that in reality
K = 2) we see that a K = 1 solution is not the best fit (although there is
a tendency to overestimate K when a small number of markers are
used). See the text for a description of the simulated stratification.

one kind of model, although it is not always clear which
model would be most appropriate for a given sample – as
the STRUCTURE manual notes, ‘ ... some experimenta-
tion on the part of the user’ is required. We therefore used
four models in STRUCTURE: first varying whether or
not an admixture model was used. In the no admixture
model, individuals are assumed to discretely belong to
either one population or another. We also applied both
correlated and independent allele frequencies models. In
general, the authors of STRUCTURE recommend using
an admixture model, because of it’s flexibility; also, they
suggest the correlated allele frequency model is a good ‘de-
fault’ model. Relatively long burn-in (50,000) and run
lengths (500,000) were used for STRUCTURE analysis;
also, each analysis was repeated three times to assess con-
vergence. In each case, we fit models for K = 1, K = 2 and
K = 3, using both STRUCTURE and the method de-
scribed above, implemented in the computer program
L-POP.

In all cases, 500 individuals were simulated, for either
20, 50 or 100 SNPs. Either no population stratification
was generated, or a simple two-strata substructure was
introduced, such that Wright’s FST value was 0.04. As
these simulations were intended as simple illustrations of
the methods rather than comprehensive evaluations, only
a single dataset was generated in each condition.

The results from L-POP are shown in table 2, which
gives the AIC for K = 1, K = 2 and K = 3 solutions (normal-
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Table 3. A comparison of L-POP and STRUCTURE: determining K in STRUCTURE

ADMX CORR M No stratification (K = 1)

K = 1 K = 2 K = 3

Stratification (K = 2)

K = 1 K = 2 K = 3

Y Y 20 1.000
1.000
1.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.063
0.646
0.917

0.937
0.354
0.083

50 1.000
1.000
1.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.997
0.750
0.083

0.003
0.250
0.917

100 1.000
1.000
1.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.401
0.953
0.214

0.599
0.047
0.786

N 20 1.000
1.000
1.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.426
1.000
0.000

0.574
0.000
1.000

50 1.000
1.000
0.999

0.000
0.000
0.000

0.000
0.000
0.001

0.000
0.000
0.000

0.154
0.881
0.964

0.846
0.119
0.036

100 0.000
0.000
0.000

0.012
0.000
0.995

0.988
1.000
0.005

0.000
0.000
0.000

0.622
0.475
0.475

0.378
0.525
0.525

N Y 20 1.000
1.000
1.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

1.000
1.000
1.000

0.000
0.000
0.000

50 1.000
1.000
1.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

1.000
1.000
1.000

0.000
0.000
0.000

100 1.000
1.000
1.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

1.000
1.000
1.000

0.000
0.000
0.000

N 20 1.000
1.000
1.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

1.000
1.000
1.000

0.000
0.000
0.000

50 0.000
0.000
0.000

0.000
0.000
0.000

1.000
1.000
1.000

0.000
0.000
0.000

0.000
0.000
0.000

1.000
1.000
1.000

100 0.000
0.000
0.000

0.000
0.000
0.000

1.000
1.000
1.000

0.000
0.000
0.000

0.000
0.000
0.000

1.000
1.000
1.000

Values represent the posterior probabilities of each particular solution, e.g. a value of 1.000 for a single solution
indicates that this is the most likely solution. The simulations were repeated using the same datasets under the four
STRUCTURE models, as described in the text. The analysis was repeated three times in each condition, to assess
convergence – the three rows under each condition represent these repeat runs. See the text for a description of the
simulated stratification.

ized by subtracting the minimum of these three values
from each, so that the best-fitting solution will score 0.00).
The column labelled M indicates the number of markers
used. When there is no stratification present, L-POP cor-
rectly identifies the K = 1 solution in all cases. When strat-

ification is present, L-POP selects either a K = 2 or a K = 3
solution – in all three cases it rejects a K = 1 solution
which is perhaps the most important feature from the
point of view of correcting for stratification in tests of
association (i.e. it is better to over-estimate than to
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under-estimate the number of classes). Pleasingly, the
condition with the most markers (M = 100) gave the cor-
rect K = 2 solution.

The results from STRUCTURE are shown in table 3.
The first two columns indicate which of the four STRUC-
TURE models was applied; for each value of M three rows
are shown, representing the three repeated runs of
STRUCTURE on the same dataset. The values in the
final six columns indicate the posterior probability of the
K = 1, K = 2 and K = 3 solutions. These are calculated
from the estimated log-likelihood of the data given K
which STRUCTURE estimates, P(X AK), re-expressed to
give P(K AX) where X are the data. The first three of these
columns represent the case when no stratification was
generated: the models that allow correlated allele frequen-
cies perform better in this case, correctly identifying the
K = 1 solution in all cases. The models that do not allow
for correlated allele frequencies, in this particular setting,
give a less clear set of results (for example, consistently
selecting the K = 3 solution when M = 50 and M = 100 in
the no admixture model). When stratification was gener-
ated (the final three columns) then, similar to L-POP, a
K = 1 solution was never selected, although sometimes a
K = 3 model is selected. In some cases, despite the rela-
tively long run times, quite different results are obtained
from different runs on the same dataset, indicating prob-
lems converging. The no admixture/correlated allele fre-
quencies model correctly selects the K = 2 model every
time. However, this is not the suggested default model
and one would not expect this pattern of results to hold for
all datasets (e.g. when more subtle stratification and/or
admixture does exist).

It is also of interest to compare how L-POP and
STRUCTURE assign individuals to classes, for a specific
K 1 1 solution. For example, in the case when two strata
actually are present in the data, for a K = 2 solution, how
do the posterior class probabilities assigned to each indi-
vidual compare between methods? Here we find almost
complete agreement between the different STRUCTURE
models and between L-POP and STRUCTURE. To as-
sess this, we consider the correlations between the posteri-
or probabilities; also, we consider agreement in terms of
individuals’ ‘best-fit class’ (i.e. determined by the maxi-
mum posterior probability). For M = 20, the different
STRUCTURE models misassigned either 61 or 62 of the
500 individuals (note: it was the same 61/62 individuals
who were misassigned across different methods); L-POP
misassigned the same 62 individuals. The minimum cor-
relation between the STRUCTURE methods and repeat
runs was 0.996 – i.e. whatever model was applied, for a

specific K, individuals were similarly classified. The mini-
mum correlation between the STRUCTURE and L-POP
posterior probabilities was 0.988. For M = 50, all
STRUCTURE methods and repeat runs misassigned the
same 10 individuals as L-POP; all correlations between
STRUCTURE and L-POP posterior probabilities were
1.000. For M = 100 we observed perfect assignment and
correlations of 1.000.

In summary, both L-POP and STRUCTURE were
broadly able to distinguish between samples with no strat-
ification versus samples with a simple two-strata pattern
of stratification. The ability to select the correct K 1 1
solution seems less well developed, although it is fair to
say that this is a general problem with all classification
methods in any context. For a specific K solution, how-
ever, there was near complete agreement in how L-POP
and STRUCTURE assigned individuals to classes, at
least in these simple cases. For more subtle, complex pat-
terns of population substructure, we might not expect
such a high degree of convergence between L-POP and
STRUCTURE, or between the different models in
STRUCTURE: such an analysis is beyond the scope of
the present work, however.

Simulation Study

By simulating data under a number of different condi-
tions, we aimed to explore the effect of sample size, num-
ber of marker loci and genetic distance between subpopu-
lations on the ability to detect stratification. A number of
other properties of the markers used were also varied (e.g.
number of alleles and the distribution of between-subpop-
ulation allele frequency differences). In all, thirteen differ-
ent conditions were examined. In each condition, five
datasets were generated, with 10, 20, 50, 100 and 200
marker loci respectively. In all cases, two models were
applied to the data: K = 1 and K = 2. All results are shown
in table 4. Only L-POP was used for these analyses: based
on the results obtained above, we would expect many of
the properties observed below to be qualitatively similar
for STRUCTURE.

The ‘Original’ condition simulated 2,000 individuals
from two subpopulations (P1 and P2, with 1,000 individu-
als from each). All marker loci were diallelic, with an aver-
age allele frequency of 0.5 and an average between-sub-
population allele frequency difference (‰) of 0.2. For all
markers, one allele had a frequency of 0.4 in P1 and 0.6 in
P2. The results for all simulations reported in this section
are given in table 4. A two-class solution is correctly
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Table 4. Detection of population stratification: simulation results

M ¢AIC P(C ) Corr PP1 PP2 ¢AIC P(C ) Corr PP1 PP2

‘Original’: ‰ = 0.2; N = 1,000 + 1,000 ‘Small’: ‰ = 0.2; N = 100 + 100
10 409.42 0.557 0.817 0.314 0.799 29.07 0.485 0.785 0.250 0.719
20 1,157.10 0.491 0.893 0.145 0.837 110.22 0.483 0.860 0.151 0.814
50 5,484.41 0.501 0.979 0.032 0.971 447.65 0.488 0.960 0.034 0.941

100 13,359.38 0.502 0.996 0.006 0.998 1,253.27 0.501 1.000 0.001 0.999
200 28,984.38 0.500 1.000 0.000 0.999 2,855.87 0.500 1.000 0.000 1.000

‘Delta’: ‰ = 0.1; N = 1,000 + 1,000 ‘Delta-Small’: ‰ = 0.1; N = 100 + 100
10 37.07 0.636 0.648 0.538 0.735 –0.97 0.918 0.500 0.907 0.929
20 72.66 0.480 0.720 0.341 0.620 2.75 0.830 0.585 0.756 0.904
50 594.97 0.527 0.847 0.192 0.752 16.46 0.487 0.800 0.204 0.769

100 1,898.15 0.506 0.911 0.115 0.872 83.40 0.484 0.875 0.106 0.862
200 5,414.64 0.500 0.979 0.030 0.969 357.87 0.517 0.950 0.065 0.969

‘Unequal’: ‰ = 0.2; N = 250 + 1,750 ‘Absolute’:‰ = 0.2; N = 1,000 + 1,000
10 134.81 0.112 0.432* 0.554 0.935 578.91 0.477 0.833 0.209 0.745
20 473.36 0.134 0.704* 0.308 0.944 1,785.51 0.498 0.915 0.119 0.876
50 2,250.96 0.129 0.964* 0.012 0.945 6,814.84 0.502 0.986 0.023 0.980

100 5,589.78 0.125 0.996* 0.000 0.994 16,594.40 0.500 1.000 0.000 0.999
200 12,168.17 0.125 1.000* 0.000 0.999 34,974.14 0.500 1.000 0.000 1.000

‘Split1’: ‰ = 0.4, 0.0 (mean ‰ = 0.2); N = 1,000 + 1,000 ‘Split2’: ‰ = 0.8, 0.0 (mean ‰ = 0.2); N = 1,000 + 1,000
10 1,341.61 0.515 0.903 0.151 0.878 4,004.12 0.495 0.986 0.016 0.973
20 4,039.44 0.504 0.965 0.050 0.958 12,107.36 0.499 0.998 0.001 0.998
50 13,334.15 0.499 0.998 0.002 0.997 33,266.78 0.500 1.000 0.000 1.000

100 29,769.10 0.500 1.000 0.000 0.999 71,147.01 0.500 1.000 0.000 1.000
200 63,487.39 0.500 1.000 0.000 1.000 144,108.03 0.500 1.000 0.000 1.000

‘Multi’: FST " 0.04; N = 1,000 + 1,000 ‘Multi-Absolute’: FST " 0.04; N = 1,000 + 1,000
10 26.00 0.542 0.652 0.443 0.641 19,303.76 0.500 1.000 0.000 1.000
20 234.01 0.490 0.763 0.287 0.692 41,693.66 0.500 1.000 0.000 1.000
50 1,053.92 0.501 0.871 0.167 0.835 108,478.78 0.500 1.000 0.000 1.000

100 2,956.16 0.501 0.953 0.068 0.934 220,230.66 0.500 1.000 0.000 1.000
200 8,098.05 0.500 0.992 0.012 0.988 443,559.82 0.500 1.000 0.000 1.000

‘Multi-Split’: N = 1,000 + 1,000
10 2,033.58 0.501 0.945 0.066 0.936
20 2,091.13 0.499 0.948 0.064 0.934
50 2,012.31 0.496 0.950 0.052 0.939

100 1,874.20 0.509 0.946 0.071 0.947
200 1,586.13 0.490 0.948 0.045 0.934

‘Null’: ‰ = 0.0; N = 1,000 + 1,000 ‘Null-Small’: ‰ = 0.0; N = 100 + 100
10 2.51 0.989 0.991 0.987 0.77 0.175 0.174 0.176
20 –16.49 0.513 0.506 0.519 5.70 0.874 0.853 0.895
50 4.20 0.045 0.043 0.046 0.13 0.818 0.794 0.842

100 8.88 0.034 0.038 0.031 –31.05 0.551 0.553 0.550
200 –21.66 0.142 0.144 0.139 –48.94 0.532 0.537 0.526

The 13 conditions are described in the text. Each table shows results for different number of markers (M ): the difference in AIC (¢AIC )
between a K = 1 and a K = 2 solution (such that positive values indicate a K = 2 solution); the prior class probability (P (C )); the proportion of
the sample correctly assigned under a K = 2 solution (Corr ); the average posterior probability of belonging to a specific class for individuals
who truly belong to the first stratum (PP1) and individuals who truly belong to the second stratum (PP2). See the text for more details.

* In the Unequal condition, Corr represents the proportion of the minority subpopulation correctly assigned (the values would be artifi-
cially high if the usual definition of correct assignment were used).
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favoured in all five conditions (the first column M is the
number of marker loci). The columns labeled ¢AIC =
AIC(K = 1) – AIC(K = 2), so a positive value is evidence
for a two-class solution over a one-class solution. Even
with only 10 markers, this difference is large (409.42).
The final four columns refer to parameter estimates under
the K = 2 solution. The P (C ) column gives the prior class
probability for class ‘1’ – in all cases this value is near 0.5
(i.e. as the two classes were simulated at equal frequen-
cies), but the estimate increases in precision with increas-
ing number of markers. The Corr column gives the pro-
portion of individuals correctly classified on a highest
posterior probability basis.

For the ‘Original’ condition, the classification rate rises
from round 80 to 100% as the number of markers
increases. That is, although a two-class solution is fa-
voured with only 10 markers, the accuracy of the classifi-
cation is not perfect. However, for such a small number of
markers, arguably 80% accuracy is acceptable. The col-
umns labelled PP1 and PP2 give the average posterior
probability for belonging to class ‘1’ for individuals from
subpopulations ‘1’ and ‘2’ respectively. Perfect classifica-
tion would correspond to one of these values being 0 and
the other being 1. No classification would correspond to
both values equalling the prior probability for class ‘1’.
(Note that the values have been ordered such that the
smaller value always corresponds to P1 – in practice,
whether or not estimated class ‘1’ corresponds to P1 or P2
is random and arbitrary.) As can be seen, with increasing
number of markers, the separation between the two
classes increases – by 100 markers, the classification is
almost perfect.

The ‘Small’ condition was similar to the ‘Original’ con-
dition, except only 100 individuals from each subpopula-
tion were generated. Although a two-class solution is
favoured in all cases, the difference in AIC has dropped
considerably. However, the accuracy of classification has
remained approximately equal to the ‘Original’ condition.
(Note that with the smaller sample size, the precision of
the classification estimates themselves will be lower).

The ‘Delta’ condition reduces the genetic distance
between the two groups, making them less distinct and
therefore harder to separate. In this condition, the ‰ value
is 0.1 instead of 0.2 (i.e. all markers are simulated using an
allele frequency of 0.45 in the first subpopulation and
0.55 in the second). This leads to a reduction in the AIC
difference, although a two-class solution is still consistent-
ly favoured. However, the classification ability of the
model also drops under this condition. For example, with
only 10 markers, the prior probability of class ‘1’ is 0.636

(i.e. it should be 0.5); the posterior probabilities are both
above 0.5 for P1 and P2 (i.e. one should be near 0, the
other near 1). Under these conditions, around 200 mark-
ers are required before classification becomes near-per-
fect.

The next condition combines the ‘Small’ and ‘Delta’
conditions. Here, the evidence for the two-class solution is
greatly attenuated, especially with a smaller number of
markers. With only 10 markers, the model favours a one-
class solution, and shows no evidence of classifying indi-
viduals correctly (it performs at chance).

Summarising the last four conditions, it is clear that
small sample size has an extra deleterious effect when
conditions are poor to begin with. That is, the small sam-
ple size represents 10% of the large sample size. When ‰ =
0.2, the small-sample ¢AIC is also approximately 10% of
the large-sample ¢AIC. For example, for 20 and 200 mark-
ers, it is 9.51 and 9.85%, respectively (i.e. 110.22/
1,157.10 and 2,855.87/28,984.38, respectively). How-
ever, when the genetic distance between groups is smaller
(i.e. ‰ = 0.1), then the evidence for stratification is propor-
tionally less in the small sample compared to the large
sample: the small-sample ¢AIC is only 3.77% and 6.59% of
the large-sample value, for 20 and 200 markers, respec-
tively.

However, sample size and average ‰ value are not the
only variables which impact on the model’s ability to
detect stratification and classify individuals. In the ‘Un-
equal’ condition, the subpopulations were simulated with
unequal mixing proportions such that one class formed a
minority, the other a majority, rather than the 50:50 bal-
ance previously used. In this condition, although the over-
all sample size was held constant (2,000), 250 individuals
were simulated from the first class, 1,750 individuals were
simulated from the second. Compared to the ‘Original’
condition, there has been some reduction in the ¢AIC val-
ues, and the classification ability has been affected also.
The values in the Corr column represent the proportion of
the minority subpopulation correctly assigned (the values
would be artificially high, if the usual definition of correct
assignment were used).

The next ‘Absolute’ condition investigated the effect of
average allele frequency: keeping ‰ fixed at 0.2, the allele
frequencies were simulated at 0.2 and 0.4 for the two sub-
populations rather than 0.4 and 0.6. There does not
appear to be any great effect of absolute allele frequency,
compared to the ‘Original’ condition, at least under these
conditions. However, this does not address the issue of
whether or not rare alleles are, in practice, more or less
likely to show differences between different ethnic groups.



102 Hum Hered 2004;58:93–107 Purcell/Sham

Table 5. Allele frequencies used for ‘Multi’ and ‘Multi-Absolute’
scenarios

Allele ‘Multi’

P1 freq. P2 freq.

‘Multi-Absolute’

P1 freq. P2 freq.

1 0.36000 0.14000 0.2305 0.0000
2 0.19625 0.30375 0.3695 0.4000
3 0.30375 0.19625 0.4000 0.3695
4 0.14000 0.36000 0.0000 0.2305

Rare alleles are subject to greater fluctuation in frequency
due to genetic drift than common alleles, and so may be
expected to show greater between-population differences.
In fact, recent studies looking at SNP frequencies in dif-
ferent races have concluded that less frequent SNPs are
more likely to be specific to one or two races [19, 20].

Of course, the average ‰ value across a set of markers
does not capture all the information about allele frequen-
cy differences between two groups. In this ‘Split1’ and the
subsequent ‘Split2’ conditions, the impact of the distribu-
tion of frequency differences was examined, whilst keep-
ing the average ‰ value constant. In the ‘Split1’ condition,
half the markers were simulated to show no difference
between groups (i.e. ‰ = 0, both groups simulated using 0.5
allele frequency) and half the markers were simulated
using as exaggerated allele frequency difference (‰ = 0.4,
groups simulated using 0.7 and 0.3 allele frequencies). In
this way, the average between group distance was still ‰ =
0.2. We find that the pattern of allele frequency differ-
ences gives greater power to detect stratification and bet-
ter classification rates also. With only 50 markers (25 of
which show no between-subpopulation differences) near-
perfect classification can be achieved.

The ‘Split2’ condition represents a more extreme ver-
sion of the ‘Split1’ condition. Rather than splitting the
markers into two equal-sized groups, three-quarters of
them were set to show no differences with only the
remaining quarter showing an increased ‰ of 0.8 (i.e. allele
frequencies 0.1 and 0.9). (For the 10-marker condition, 2
markers had ‰ = 0.8, one marker ‰ = 0.4 and seven mark-
ers ‰ = 0; similarly for the 50-marker condition). In this
way, the average ‰ value is still 0.2 in all conditions. This
more extreme split results in even better ability to detect
and characterise subpopulation structure, despite the fact
that the majority of loci do not show any allele frequency
differences between groups at all. This means that a few
well-selected markers with large between-group variation

might be all that are needed to accurately distinguish
between the major ethnic groups.

All previous simulations have been for a diallelic locus:
the method is equally applicable to mutli-allelic markers
however. A ‰ value of 0.2 corresponds to FST = 0.04 when
the average allele frequency is 0.5. That is, the average
expected heterozygosity within each subpopulation is
(1 – 0.62 – 0.42) + (1 – 0.42 – 0.62)/2 = 0.48 and the
expected heterozygosity across all populations based on
the average allele frequencies is 1 – 0.52 – 0.52 = 0.50 and
so FST = (0.50 – 0.48)/0.50 = 0.04. In this ‘Multi’ condi-
tion, the performance of using multi-allelic markers with
comparable FST values was examined. For two popula-
tions, the allele frequency values shown in table 5 were
used to simulate the markers for the two subpopulations,
to give a FST value of approximately 0.04. Performance is
worse under these conditions, especially for smaller num-
bers of markers, presumably due to the average between-
population allele frequency differences being smaller.

In the ‘Multi-Absolute’ condition, a different set of
allele frequencies were employed but with a similar FST
value (0.04). The critical factor in this condition is that
some of the subpopulation-specific allele frequencies were
set to 0 (also shown in table 5). This condition shows a
markedly different set of results: there is a massive
increase in the ability to select a two-class solution and
classification is essentially perfect with only 10 markers.
In the ‘Multi’ condition the average difference in allele
frequency between subpopulations was 0.16375; in this
‘Multi-Absolute’ condition the average difference is even
smaller, only 0.1305. It would appear that the presence of
allele frequencies of 0 allows the model to easily distin-
guish between classes.

In this ‘Multi-Split’ condition, the three different types
of multi-allelic marker used above are combined. Markers
with allele frequencies corresponding to the ‘Multi-Abso-
lute’ condition are labeled ‘Type I’ markers. Markers with
allele frequencies corresponding to the ‘Multi’ condition
are labelled ‘Type II’. Finally, markers with four equifre-
quent alleles (i.e. 0.25 in both subpopulations) are labelled
‘Type III’ markers.

In all of the five marker number conditions, only 2
markers are of type I, 2 are of type II and the remaining
M – 4 are of type III. That is, unlike all previous scenarios,
where we would expect increasing information with in-
creasing M, only the uninformative marker count rises
with M in this condition. In all five cases, there are only
four out of M markers that show any difference between
subpopulations: when M = 200 there are 196 markers
which should not contribute anything except noise.
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Fig. 1. Simulations result: ¢AIC for different models.

In all cases a two-class solution is selected, with large
AIC differences, although this decreases with increasing
M. The classification ability of the model remains roughly
constant over the different M, with a Correct value of
around 0.95 and posterior probabilities around 0.05 and
0.95. This performance is roughly equivalent to the ‘Orig-
inal’ condition with 50 markers – despite the fact that
only four markers will be contributing to the solution.

Utilising the diagnostic output features of L-POP (see
Implementation section below), the inter-class locus-spe-
cific genetic distances are tabulated for M = 10, showing
clearly the relative contribution to the solution (table 6).

The final two conditions examine performance under
the null – that is, when there are no true allele frequency
differences between subpopulations at any of the markers.
Although the two groups are simulated separately, there
are no genetic differences between them, so one would
expect a single-class solution in all cases. The results show
that this is not necessarily the case, however. In fact, in

Table 6. Inter-class locus-specific genetic
distances for multiallelic scenarios when
M = 10

Locus Type Inter-class
locus variation

1 I 0.6193
2 I 0.6177
3 II 0.0721
4 II 0.0965
5 III 0.0121
6 III 0.0139
7 III 0.0215
8 III 0.0301
9 III 0.0241

10 III 0.0324
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Fig. 2. Simulation results: ¢AIC for different models, reduced scale.

three out of the five simulations, there was evidence for a
two-class solution, although this was quite slight, com-
pared to the previous AIC differences obtained. As ex-
pected, the P(C ) values (calculated under a two-class solu-
tion) are quite meaningless – what is significant is that the
P1 and P2 posterior probability values are both similar to
this value. (Of course, in practice, one would not be aware
of the P1 vs. P2 distinction.) When the model favours a
two-class solution, it appears that one of the classes is very
small (around 2–4% of the sample). This suggests that the
AIC may have a tendency to over-estimate the true value
of K. Further work will be required to investigate the con-
ditions under which the null model is retained, and also
the possible use of metrics other than AIC to evaluate
model-fit. The final ‘Null-Small’ condition simulates un-
der the null but with the smaller (N = 200) sample size.
Results appear to be similar to the ‘Null’ condition
above.

Summary Results of Simulations
Figure 1 plots the AIC difference for the 13 different

conditions as a function of M. In all cases, the AIC differ-
ence appears to increase with increasing number of mark-
ers in a roughly linear manner. The ‘Split’ conditions
resulted in increased ability to detect the two-class solu-
tion; using multi-allelic markers with allele frequencies as
in the ‘Multi-Absolute’ condition had the greatest impact
(note: the line goes off the scale). As expected, decreasing
the number of markers, genetic distance between groups
and sample size all result in reduced AIC differences.

Figure 2 plots the same information, but changes the
scale of the Y-axis as appropriate for the conditions with
little or no AIC difference. Although there is a trend for
the AIC difference to become negative under the ‘Null’
conditions (and therefore represent a K = 1 solution) this
is not as striking as the performance under the alternative.
This plot also shows the poor performance of the ‘Delta-
Small’ condition with fewer than 100 markers.
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Fig. 3. Simulation results: Proportion of correct classification (Corr) for different models.

Finally, figure 3 plots the classification accuracy rate
for the different conditions by increasing M. Note that the
line for the ‘Multi-Split’ condition is flat, as expected, as
the number of informative markers does not increase with
M. In most conditions, performance is acceptable with
around 50 markers (above 95% accuracy) and near-per-
fect with around 200 markers.

Discussion

The new genetic background methods (genomic
control and structured association) still require a fully
comprehensive evaluation of power issues. Bacanu et al.
[21] found that in the absence of stratification genomic
control approaches are more powerful, especially with
common diseases. However, in the presence of stratifi-
cation the results are more complex. Overall, it seems
that these methods can work with as few as 20 loci –

this figure seems roughly supported by the present simula-
tions.

Unlike family-based methods, which logically control
for stratification, genetic background methods only pro-
babilistically control for stratification. That is, whether or
not the stratification is correctly detected in the first place
is subject to certain power constraints. Cardon et al. [22]
point out that the overall type I error rate can still be
inflated (doubled) at low levels of stratification (i.e. when
the power of the genomic control method is significantly
less than 100%). These results suggest that genetic back-
ground methods do not provide absolute protection
against stratification.

However, one potential advantage of the structured
association approach is that cluster-membership can be-
come a variable in analysis to do more than just control
for stratification effects. For example, it is possible to look
for cluster-based interaction effects that might represent
G ! E or allelic heterogeneity (i.e. E is indexed by cluster).
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A very important issue is the selection of an optimal
marker set – several studies have begun to look at diver-
gence in allele frequency for many markers between the
major ethnic groups [19, 20]. Using these markers would
be preferable for two reasons: first, they provide the great-
est discriminatory ability due to the greater divergence in
allele frequencies; second, as the allele frequencies are
well-estimated for major ethnic groups, it would be possi-
ble to create pseudo-classes that have class-specific allele
frequencies fixed to these values. In this way, it might
become apparent, for instance, that a large proportion of a
sample is an admixture between Caucasian and African-
American ancestry despite the fact that there are no pure
African-American individuals in the sample. That is, cur-
rently, to detect a class as admixed, the ancestral classes
must exist in the sample in the pure form also. Online
resources such as the ALFRED database project should
assist this effort [23]. The simulation results support the
notion that a handful of well-chosen markers may provide
much more discriminatory power than hundreds of ran-
domly-selected markers.

Implementation

The methods described above have been implemented
in the computer program L-POP1. The program can han-
dle missing genotypic data, autosomal and X chromo-
some markers and haploid organisms. Posterior probabil-
ities can be estimated for each individual; alternatively,
individuals can be fixed to belong to a particular class.
Options to specify admixed solutions, relax certain as-
sumptions and calculate the diagnostic measures men-
tioned above are incorporated.

The software L-ASSOC was developed to implement
the ML method for assessing association in structured
populations: it can perform a test of association (additive
and dominance effects) controlling for potential substruc-
ture is specified; ignoring substructure; allowing different
magnitudes of QTL effect between class; testing only for
homogeneity of allele frequency and/or effect between
classes.

1 L-POP is available for download from http://statgen.iop.kcl.ac.uk/lpop/.

Appendix 1: The Basic E-M Algorithm

The count I of individuals in class j of K is obtained by summing
over all i individuals

I (C = j ) = ™
i

P (C = j AGi ).

The allele counts A for each class are calculated in an analogous fash-
ion

A (Gl = k AC = j ) = ™
i

P (C = j AGi )(Di1+ Di2 )

where, for nonmissing allele data, Di1 is 1 if individual i’s first allele
at locus l is k and otherwise 0; Di2 is similarly defined for the in-
dividual’s second allele. For missing data at a locus, values are im-
puted into Di1 and Di2 for each possible allele k to represent the
probability of that allele occurring in that individual, which equals
P (C = j AGi )P (Gl = K AC = j ) where P (Gl = k AC = j ) is the estimated
class-specific allele frequency from the previous E-M iteration (or the
starting values on the first iteration). The prior class probabilities are
then

P (C = j ) = 
I (C = j )

N

whilst class-specific allele frequencies are

P (Gl = k AC = j ) = 
A (Gl = k AC = j )

2I (C = j )

as class j contains 2I (C = j ) chromosomes.
In estimating P (C AG ) , the probability of observing individual i is

first calculated

P (Gi ) = ™
j

P (C = j ) ¶
l

Ù P (Gl = ki1 AC = j )P (Gl = ki2 AC = j )

where ki1 and ki2 are the two alleles at locus l and Ù = 1 if ki1 = ki2
(i.e.homozygous genotype) or Ù = 2 if ki1 0 ki2 (i.e. heterozygous geno-
type). To handle missing data, P (Gl = missing AC = j ) is defined as 1
and so will not contribute to the product term. It is this step that
defines the intra-class properties of Hardy-Weinberg and linkage
equilibrium: within each subpopulation all alleles are assumed to
occur independently within and across loci. Summing over all classes
weighted by the prior class probability then gives the overall likeli-
hood of observing that individual, P (Gi ). For individual i the posteri-
or probability of belonging to class j is

P (C = j AGi ) = P (C = j ) ¶l Ù P (Gl = ki1 AC = j )P (Gl = ki2 AC = j )
™j) P (C = j) ) ¶l Ù P (Gl = ki1 AC = j) )P (Gl = ki2 AC = j) )

whilst the sample log-likelihood on E-M iteration n is Ïn =
™i ln P (Gi ). The E-M algorithm converges if AÏn – Ïn – 1 A falls below
some arbitrary tolerance value. Otherwise, returning to the E-Step,
P (G AC ) and P (C ) are recounted on the basis of the newly-revised
estimates of P (C AG ).
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Appendix 2: Admixed Classes

We calculate the expected contribution from ancestral class a of
allele k conditional on the data and current model estimates as the
unit to be used in the ancestral class allele count. For individual i,
considering allele k at locus l, we can calculate the expected contribu-
tion from ancestral class a

· (Gl = k ACA = a, Gi )

= ™
d

P (CD = d AGi ) ! [£]da P (Gl = k ACA = a )
™a) [£]da) P (Gl = k ACA = a) )

"
where the first sum is over d derived classes. (Note that if
™a) [£]da) P (Gl = k ACA = a) ) equals zero, it can be set to any nonzero
number without adverse effect, to avoid computational problems.)

The sample contribution to the allele k count for ancestral class a
is therefore

A (Gl = k ACA = a ) = ™
i

· (Gl = k ACA = a, Gi )(Di1 + Di2 )

which is equivalent to the original allele-counting formula in the case
of a ‘pure’ derived class where [£]da takes only 1 or 0 values as
· (Gl = k ACA = a ) will only ever equal P (CD = d AGi ) or 0.

Missing data have to be handled slightly differently, however.
The contribution to the ancestral class count a for each possible allele
k is calculated by summing over all derived classes d

A (Gl = k ACA = a ) = ™
i
#™

d
· (Gl = k ACA = a, Gi )[£]da$ (Di1 + Di2 )

where, as before, for missing alleles Di1 = Di2 = P (CD = d AGi )P
(Gl = k ACD = d ).

The ancestral class individual counts can be calculated by simply
summing over all the k allele counts for any one locus l I (CA = a ) =
™i ™kA (Gl = k ACA = a )/2. Having counted the number of individuals
and alleles in each ancestral class, we calculate the allele frequencies
in the ancestral classes P (Gl = k ACA = a ) = A (Gl = k ACA = a )/
2I (CA = a ) and then finally the derived class allele frequencies which
are simply weighted sums of the constituent ancestral class allele fre-
quencies P (Gl = k ACd = d ) = ™a P (Gl = k ACA = a )[£]da. Having calcu-
lated the derived class prior probabilities P (CD ) and allele frequen-
cies P (G ACD ), the M-step proceeds, for derived classes only, as in the
no-admixture case described above.
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