
An important goal of human genetic studies is to detect 
genetic variations that have an influence on risk of  
disease or other health-related phenotypes. The typical 
genetic study involves collecting a sample of subjects 
with phenotypic information, genotyping these sub-
jects and then analysing the data to determine whether 
the phenotype is related to the genotypes at various loci. 
Statistical analysis is therefore a crucial step in genetic 
studies, and a rigorous framework is required to ana-
lyse the data in the most informative way and to present 
the findings in an interpretable and objective manner. 
Although there are many frameworks for drawing sta-
tistical inferences from data, the most popular frame-
work in genetics is the frequentist significance testing 
approach, which was proposed by Fisher1 and further 
developed by Neyman and Pearson2 (BOX 1). Most genetic 
researchers choose to present statistical significance (that 
is, P values) in summarizing the results of their studies. 
The use of P values as a measure of statistical evidence 
has important limitations3, and there is little doubt that 
the Bayesian approach provides a more natural and logi-
cally consistent framework for drawing statistical infer-
ences4,5. However, Bayesian inference requires prior 
distributions to be specified for model parameters and 
intensive computation to integrate likelihoods over the 
specified parameter space. If different prior distributions 
are adopted in different studies, then this could com-
plicate the interpretation and synthesis of the findings. 
Currently, significance testing remains the most widely 
used, convenient and reproducible method to evaluate  
the strength of evidence for the presence of genetic 
effects, although Bayesian analyses may be particularly 

appealing for fine-mapping a region with multiple  
significant signals to identify the true causal variants5.

Inherent in the significance testing framework is the 
requirement that studies are designed to enable a realis-
tic chance of rejecting the null hypothesis (H0) when it is 
false. In the Neyman–Pearson hypothesis testing frame-
work, the probability of rejecting H0 when the alterna-
tive hypothesis (H1) is true is formalized as the statistical 
power (BOX 1). Power calculation (BOX 2) is now a required 
element in study proposals to ensure meaningful results. 
Although inadequate statistical power clearly casts doubt 
on negative association findings, what is less obvious is 
that it also reduces the validity of results that are declared 
to reach significance. Before the emergence of large-scale 
association studies and the formation of international 
consortia in recent years, the study of human genetics 
has suffered much from the problem of inadequate sta-
tistical power, a consequence of which is the frustrat-
ingly low rates of successful replication among reported 
significant associations6,7.

Power calculations are also important for optimizing 
study design. Although researchers have no control over 
the actual genetic architecture that underlies a pheno-
type, they do have some control of many aspects of study 
design, such as the selection of subjects, the definition 
and measurement of the phenotype, the choice of how 
many and which genetic variants to analyse, the decision 
of whether to include covariates and other possible con-
founding factors, and the statistical method to be used. 
It is always worthwhile to maximize the statistical power 
of a study, given the constraints imposed by nature or by 
limitations in resources8.
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Likelihoods
Probabilities (or probability 
densities) of observed data 
under an assumed statistical 
model as a function of model 
parameters.
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Abstract | Significance testing was developed as an objective method for summarizing 
statistical evidence for a hypothesis. It has been widely adopted in genetic studies, 
including genome-wide association studies and, more recently, exome sequencing  
studies. However, significance testing in both genome-wide and exome-wide studies must 
adopt stringent significance thresholds to allow multiple testing, and it is useful only when 
studies have adequate statistical power, which depends on the characteristics of the 
phenotype and the putative genetic variant, as well as the study design. Here, we review 
the principles and applications of significance testing and power calculation, including 
recently proposed gene-based tests for rare variants.
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In this Review, we present the basic principles of 
significance testing and statistical power calculation as 
applied to genetic studies. We examine how significance 
testing is applied to large data sets that include millions 
of genetic variants on a genome-wide scale. We then 
provide an overview of current tools that can be used 
to carry out power calculations and discuss possible 
ways to enhance the statistical power of genetic stud-
ies. Finally, we identify some unresolved issues in power 
calculations for future work.

Multiple testing burdens in genome-wide studies
Genome-wide association studies (GWASs) were made 
feasible in the late 2000s by the completion of the 
International HapMap Project9 and the development 
of massively parallel single-nucleotide polymorphism 
(SNP) genotyping arrays, which can now genotype up to 
2.5 million SNPs simultaneously8,10,11. Partly because of 
the enormous size of the data sets, GWASs have tended 
to use simple statistical procedures, for example, logis-
tic regression analysis of either one SNP at a time (with 
adjustment for potential confounding factors such as 
ethnic origin) or principal components that are derived 
from a subset of the SNPs scattered throughout the  
genome12,13. As many SNPs are being tested, keeping  
the significance threshold at the conventional value of 
0.05 would lead to a large number of false-positive sig-
nificant results. For example, if 1,000,000 tests are carried 
out, then 5% of them (that is, 50,000 tests) are expected to 
have P < 0.05 by chance when H0 is in fact true for all the 
tests. This multiple testing burden has led to the adoption  
of stringent significance thresholds in GWASs.

In the frequentist framework, the appropriate signifi-
cance threshold under multiple testing is usually calcu-
lated to control the family-wise error rate (FWER) at 0.05. 
Simulation studies using data on HapMap Encyclopedia 
of DNA Elements (ENCODE) regions to emulate an 
infinitely dense map gave a genome-wide significance 
threshold of 5 × 10−8 (REF. 14). Similarly, by subsampling 
genotypes at increasing density and extrapolating to 
infinite density, a genome-wide significance threshold 
of 7.2 × 10−8 was obtained15. Another approach using 
sequence simulation under various demographic and 
evolutionary models found a genome-wide significance 
threshold of 3.1 × 10−8 for a sample of 5,000 cases and 
5,000 controls, in which all SNPs were selected with 
minor allele frequency of at least 5%, for a European 
population16. Subsequently, a genome-wide significance 
threshold of 5 × 10−8 has been widely adopted for studies 
on European populations regardless of the actual SNP 
density of the study. For African populations, which 
have greater genetic diversity, a more stringent threshold 
(probably close to 10−8) is necessary16.

There have been proponents for an alternative 
approach to multiple testing adjustments that consid-
ers only the SNPs that are actually being tested in the 
study rather than a SNP set with maximal density. Such 
an approach may be particularly appropriate for stud-
ies adopting custom SNP arrays that are enriched for 
SNPs in candidate disease-relevant genes or pathways, 
such as the MetaboChip17 and ImmunoChip18. The 

Box 1 | What is statistical power?

The classical approach to hypothesis testing developed by Neyman and Pearson2 
involves setting up a null hypothesis (H

0
) and an alternative hypothesis (H

1
), calculating 

a test statistic (T) from the observed data and then deciding on the basis of T whether 
to reject H

0
. In genetic studies, H

0
 typically refers to an effect size of zero, whereas H

1
 

usually refers to a non-zero effect size (for a two‑sided test). For example, a convenient 
measure of effect size in case–control studies is the log odds ratio (log(OR)), where the 
odds ratio is defined as the odds of disease in individuals with an alternative genotype 
over the odds of disease in individuals with the reference genotype.

It is important to appreciate that the data obtained from a study and therefore the 
value of T depend on the particular individuals in the population who happened to be 
included in the study sample. If the study were to be repeated many times, each 
drawing a different random sample from the population, then a set of many different 
values for T would be obtained, which can be summarized as a frequency or probability 
distribution.

The P value, which was introduced earlier by Fisher1 in the context of significance 
testing, is defined as the probability of obtaining — among the values of T generated 
when H

0
 is true — a value that is at least as extreme as that of the actual sample 

(denoted as t). This can be represented as P = P(T ≥ t | H
0
).

For a one-sided test (for example, a test for effect size greater than zero), the 
definition of the P value is slightly more complicated: P* = P/2 if the observed effect  
is in the pre-specified direction, or P* = (1 – P)/2 otherwise, where P is defined as above.  
In the Neyman–Pearson hypothesis testing framework, if the P value is smaller than a 
preset threshold α (for example, 5 × 10−8 for genome-wide association studies), then H

0
 

is rejected and the result is considered to be significant. The range of values of T that 
would lead to the rejection of H

0
 (that is, T ≥ tʹ for which the P value would be less  

than α) is known as the critical region of the test.
By setting up a hypothesis test in this manner, the probability of making the error of 

rejecting H
0
 when it is true (that is, a type 1 error) is ensured to be α. However, another 

possible type of error is the failure to reject H
0
 when it is false (that is, type 2 error, the 

probability of which is denoted as β). Statistical power is defined as 1 – β (that is,  
the probability of correctly rejecting H

0
 when a true association is present).

An ideal study should have small probabilities for both types of errors, but there is  
a subtle asymmetry (see the figure): while the investigator sets the probability of  
type 1 error (α) to a desired level, the probability of type 2 error (β) and therefore 
statistical power are subject to factors outside the investigator’s control, such as  
the true effect size, and the accuracy and completeness of the data. Nevertheless, the 
investigator can try to optimize the study design, within the constraints of available 
resources, to maximize statistical power and to ensure a realistic chance of obtaining 
meaningful results.

This schematic representation of the probability distributions of test statistic under H
0
 and H

1
 

shows the critical threshold for significance (blue line), the probability of type 1 error (α; purple) 
and the probability of type 2 error (β; red). The test statistic is constructed to be standard 
normal under H

0
.
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Family-wise error rate
(FWER). The probability of  
at least one false-positive 
significant finding from a family 
of multiple tests when the  
null hypothesis is true for  
all the tests.

traditional Bonferroni correction sets the critical sig-
nificance threshold as 0.05 divided by the number of 
tests, but this is an overcorrection when the tests are cor-
related. Modifications of the Bonferroni method have 
been proposed to allow dependencies between SNPs 
through the use of an effective number of independent 
tests (Me) (BOX 3). Proposed methods for evaluating Me 
in a study include simply counting the number of linkage 
disequilibrium (LD) blocks and the number of ‘singleton’ 

SNPs19, methods based on the eigenvalues of the correla-
tion matrix of the SNP allele counts (which correspond 
to the variances of the principal components20–22) and a 
method based directly on the dependencies of test out-
comes between pairs of SNPs23. A recent version of the 
eigenvalue-based method24 has been shown to provide 
good control of the FWER (BOX 3). When applied to the 
latest Illumina SNP array that contained 2.45 million  
SNPs, it gave an estimated Me of 1.37 million and a 

Box 2 | Power calculation: an example

As a simple illustrative example, we consider a case–control study that involves a biallelic locus in Hardy–Weinberg 
equilibrium with allele frequencies 0.1 (for Allele A) and 0.9 (for Allele B). The risk of disease is 0.01 for the BB genotype 
and 0.02 for the AA and AB genotypes. The study contains 100 cases of subjects with the disease and 100 normal 
control subjects, and it aims to test the hypothesis that the AA and AB genotypes increase the risk of disease with a 
type 1 error rate of 0.05.

The association between disease and the putative high-risk genotypes (that is, AA and AB) can be assessed by the 
standard test for the difference between two proportions. In this scenario, the two proportions are the total frequencies 
of the AA and AB genotypes in the cases (p

1
) and in the controls (p

2
). The null hypothesis (H

0
) is that the two proportions 

are equal in the population, in contrast to the alternative hypothesis (H
1
) in which the total frequencies of AA and AB in 

the cases are greater than those in the controls. For a sample size of n
1
 cases and n

2
 controls, the test statistic is:

Z =
p1 – p2

n1p1 + n2p2

n1 + n2

1–
1
n1

1
n2

+
n1p1 + n2p2

n1 + n2

In large samples, Z is normally distributed and has a mean of zero and a variance of one under H
0
.

The distribution of Z under H
1
 depends on the values of the two proportions in the population (see the table). The 

calculation of these two frequencies proceeds as follows. The population frequencies of the three genotypes under  
Hardy–Weinberg equilibrium are 0.12 = 0.01 (for AA); 2 × 0.1 × 0.9 = 0.18 (for AB); and 0.92 = 0.81 (for BB). This gives a 
population disease prevalence (K) of (0.02 × 0.01) + (0.02 × 0.18) + (0.01 × 0.81) = 0.0119 according to the law of total 
probability. The genotype frequencies in the cases are therefore (0.02 × 0.01)/0.0119 = 0.0168 (for AA); 
0.02 × 0.18/0.0119 = 0.3025 (for AB); and 0.01 × 0.81/0.0119 = 0.6807 (for BB). Similarly, the genotype frequencies in the 
controls are 0.98 × 0.01/0.9881 = 0.0099 (for AA); 0.98 × 0.18/0.9881 = 0.1785 (for AB); and 0.99 × 0.81/0.9881 = 0.8116 (for AA).

AA AB BB

Population frequency 0.01 0.18 0.81

Genotype frequency in cases 0.0168 0.3025 0.6807

Genotype frequency in controls 0.0099 0.1785 0.8116

Thus, the total frequencies of the high-risk genotypes (that is, AA and AB) in the cases and the controls are 0.319328 and 
0.188442, respectively.

The distribution of Z under H
1
 can now be obtained by simulation. This involves using random numbers to generate a 

large number of virtual samples. In each sample, each case is assigned a high-risk genotype with probability 0.319328, 
whereas each control is assigned a high-risk genotype with probability 0.188442, so that the proportions of high-risk 
genotypes among cases and controls can be counted and used to calculate Z. An empirical distribution of Z is obtained 
from a large number of simulated samples. The mean and standard deviation of this empirical distribution can be used to 
characterize the distribution of Z under H

1
. When a simulation with 1,000 generated samples was carried out for this 

example, the mean and the standard deviation of the empirical distribution were 2.126 and 0.969, respectively.
Alternatively, it has been shown analytically that the distribution of Z under H

1
 has a mean that is given approximately 

by substituting the sample proportions p
1
 and p

2
 in the formula for Z by their corresponding population frequencies, and  

a variance that remains approximately one88. In this example, the population frequencies of 0.319328 and 0.188442,  
and a sample size of 100 per group, gave a mean value of 2.126.

As Z has an approximately normal distribution with a mean of zero and a variance of one under H
0
, the critical value 

of Z that corresponds to a type 1 error rate of 0.05 is given by the inverse standard normal distribution function 
evaluated at 0.95, which is approximately 1.645. Statistical power can be obtained from the empirical distribution 
obtained by simulation as the proportion of the generated samples for which Z > 1.645. In this example, this proportion 
was 0.701. Alternatively, using the analytic approximation that Z has a mean of 2.126 and a variance of 1, the 
probability that Z > 1.645 is given by the inverse standard normal distribution function evaluated at  
1.645 – 2.126 = –0.481, which is equal to 0.685. The two estimates of statistical power (0.701 and 0.685) are close to 
each other, considering that the empirical estimate (0.701) was obtained from 1,000 simulated samples with a standard 
error of 0.014 (that is, the square root of (0.701 × 0.299/1,000)).
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corresponding significance threshold of 3.63 × 10−8 for 
European populations. This is close to the projected esti-
mates for SNP sets with infinite density. When applied 
to the 1000 Genomes Project data on Europeans, the 
same method gave a significance threshold of 3.06 × 10−8, 
which again confirmed the validity of the widely adopted 
genome-wide significance threshold of 5 × 10−8, at least 
for studies on subjects of European descent.

An alternative to a modified Bonferroni approach 
is to use a permutation procedure to obtain an empiri-
cal null distribution for the largest test statistic among 
the multiple ones being tested (BOX 3). This can be 
computationally intensive because a large number of 
permutations is required to accurately estimate very 
small P values25,26. Some procedures have been pro-
posed to reduce the computational load, for example, 
by simulation or by fitting analytic forms to empirical 
distributions27,28.

The interpretation of association findings
Before GWASs became feasible, association studies 
were limited to the investigation of candidate genes or 
genomic regions that have been implicated by linkage 
analyses. In a review of reported associations for com-
plex diseases, it was found that only 6 of 166 initial asso-
ciation findings were reliably replicated in subsequent 
studies6. This alarming level of inconsistency among 
association studies may partly reflect inadequate power 
in some of the replication attempts, but it is also likely 
that a large proportion of the initial association reports 
were false positives.

What is often not appreciated is the fact that both 
inadequate statistical power and an insufficiently 

stringent significance threshold can contribute to an 
increased rate of false-positive findings among signifi-
cant results (which is known as the false-positive report 
probability (FPRP)29). Although significance (that is, the 
P value) is widely used as a summary of the evidence 
against H0, it cannot be directly interpreted as the proba-
bility that H0 is true given the observed data. To estimate 
this probability, it is also necessary to consider the evi-
dence with regard to competing hypotheses (as encap-
sulated in H1), as well as the prior probabilities of H0 and 
H1. This can be done using Bayes’ theorem as follows:

P(H0 | P ≤ ) = P(P ≤  | H0)P(H0)
P(P ≤  | H0)P(H0) + P(P ≤  | H1)P(H1)

= 0

0 + (1 – )(1 – 0)

α
α α

α

απ
απ β π

In this formula, P(H0 | P ≤ α) is the FPRP given that a 
test is declared significant, and π0 is the prior probability 
that H0 is true. Although the term P(P ≤ α | H1) is often 
interpreted as the statistical power (1 – β) under a single 
H1, for complex traits and in the context of GWASs, it 
is likely that multiple SNPs have a true association with 
the trait, so that it would be more accurate to consider 
P(P ≤ α | H1) as the average statistical power of all SNPs 
for which H1 is true. This formula indicates that, when a 
study is inadequately powered, there is an increase in the 
proportion of false-positive findings among significant 
results (FIG. 1). Thus, even among association results that 
reach the genome-wide significance threshold, those 
obtained from more powerful studies are more likely 
to represent true findings than those obtained from less 
powerful studies.

The above formula can be used to set α to control the 
FPRP as follows:

(1 – ) = P(H0 | P ≤ ) 1 – 0

1 – P(H0 | P ≤ ) 0
α α

α
π

π
β

When the power (1 – β) is low, α has to be set pro-
portionately lower to maintain a fixed FPRP; that is, the 
critical P value has to be smaller to produce the same 
FPRP for a study with weaker power than one with 
greater power. Similarly, when the prior probability that 
H0 is true (that is, π0) is high, (1 – π0)/π0 is low, then α 
again has to be set proportionately lower to keep the 
FPRP fixed at the desired level.

The fact that multiple hypotheses are tested in a sin-
gle study usually reflects a lack of strong prior hypoth-
eses and is therefore associated with a high π0. The 
Bonferroni adjustment sets α to be inversely propor-
tional to the number of tests (M), which is equivalent 
to assuming a fixed π0 of M/(M + 1); this means that one 
among the M tests is expected to follow H1. This is likely 
to be too optimistic for studies on weak candidate genes 
but too pessimistic for GWASs on complex diseases. As 
genomic coverage increases, hundreds (if not thousands) 
of SNPs are expected to follow H1. As studies become 
larger by combining data from multiple centres, the criti-
cal significance level that is necessary for controlling the 
FPRP is expected to increase so that many results that are 
close to the conventional genome-wide significance level 

Box 3 | Bonferroni methods and permutation procedures

The Bonferroni method of correcting for multiple testing simply reduces the critical 
significance level according to the number of independent tests carried out in the 
study. For M independent tests, the critical significance level can be set at 0.05/M.  
The justification for this method is that this controls the family-wise error rate (FWER) 
— the probability of having at least one false-positive result when the null  
hypothesis (H

0
) is true for all M tests — at 0.05. As the P values are each distributed as 

uniform (0, 1) under H
0
, the FWER (α*) is related to the test-wise error rate (α) by the 

formula α* = 1 – (1 – α)M (REF. 89). For example, if α* is set to be 0.05, then  
solving 1 – (1 – α)M = 0.05 gives α = 1 – (1 – 0.05)1/M. Taking the approximation that 
(1 – 0.05)1/M ≈ 1 – 0.05/M gives α ≈ 0.05/M, which is the critical P value, adjusted for M 
independent tests, to control the FWER at 0.05. Instead of making the critical P value 
(α) more stringent, another way of implementing the Bonferroni correction is to 
inflate all the calculated P values by a factor of M before considering against the 
conventional critical P value (for example, 0.05).

The permutation procedure is a robust but computationally intensive alternative  
to the Bonferroni correction in the face of dependent tests. To calculate 
permutation-based P values, the case–control (or phenotype) labels are randomly 
shuffled (which assures that H

0
 holds, as there can be no relationship between 

phenotype and genotype), and all M tests are recalculated on the reshuffled data set, 
with the smallest P value of these M tests being recorded. The procedure is repeated 
for many times to construct an empirical frequency distribution of the smallest 
P values. The P value calculated from the real data is then compared to this 
distribution to determine an empirical adjusted P value. If n permutations were 
carried out and the P value from the actual data set is smaller than r of the n smallest 
P values from the permuted data sets, then an empirical adjusted P value (P*) is given 
by P* = (r + 1)/(n + 1) (REFS 25,26,90).
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of 5 × 10−8 will turn out to be true associations. Indeed, it 
has been suggested that the genome-wide threshold of 
significance for GWASs should be set at the less stringent 
value of 10−7 (REF. 30).

Although setting less stringent significance thresh-
olds for well-powered studies has a strong theoretical 
basis, it is complicated in practice because of the need 
to evaluate the power of a study, which requires mak-
ing assumptions about the underlying disease model. 
An alternative way to control the FPRP directly with-
out setting a significance threshold is the false discov-
ery rate (FDR) method31, which finds the largest P value 
that is substantially smaller (by a factor of at least 1/φ, 
where φ is the desired FDR level) than its expected 
value given that all the tests follow H0, and declares this 
and all smaller P values as being significant. Although 
FDR statistics are rarely presented in GWAS publica-
tions, it is common to present a quantile–quantile plot 

of the P values, which captures the same information 
as the FDR method by displaying negatively ranked log 
P values against their null expectations (the expecta-
tion that the rth smallest P value of n tests is r/(n + 1), 
when H0 is true for all tests). The quantile–quantile plot 
has the added advantage that very early departure of 
negatively ranked log P values from their expected val-
ues is a strong indication of the presence of population 
stratification8.

Another approach to control the FPRP is to abandon  
the frequentist approach (and therefore P values) com-
pletely and to adopt Bayesian inference using Bayes 
factors as a measure of evidence for association4. A 
Bayes factor can be conveniently calculated from the 
maximum likelihood estimate (MLE) of the log odds 
ratio and its sampling variance, by assuming a normal 
prior distribution with a mean of zero and variance W 
(REF. 32). By specifying W as a function of an assumed 
effect size distribution, which may be dependent on allele 
frequency, one obtains a Bayes factor that can be inter-
preted independently of sample size. It is interesting that, 
if W is inappropriately defined to be proportional to the 
sampling variance of the MLE, then the Bayes factor will 
give identical rankings as the P value, which offers a link 
between these divergent approaches32. A greater under-
standing of Bayesian methods among researchers, and the  
accumulation of empirical data on effect sizes and allele 
frequencies to inform specification of prior distributions, 
should promote the future use of Bayes factors.

Determinants of statistical power
Many factors influence the statistical power of genetic 
studies, only some of which are under the investigator’s 
control. On the one hand, factors outside the investiga-
tor’s control include the level of complexity of genetic 
architecture of the phenotype, the effect sizes and allele 
frequencies of the underlying genetic variants, the inher-
ent level of temporal stability or fluctuation of the phe-
notype, and the history and genetic characteristics of the 
study population. On the other hand, the investigator 
can manipulate factors such as the selection of study sub-
jects, sample size, methods of phenotypic and genotypic 
measurements, and methods for data quality control and 
statistical analyses to increase statistical power within 
the constraints of available resources.

Mendelian diseases are caused by single-gene muta-
tions, although there may be locus heterogeneity with 
different genes being involved in different families; 
the genetic background or the environment has little 
or no effect on disease risk under natural conditions. 
The causal mutations therefore have an enormous 
impact on disease risk (increasing it from almost zero 
to nearly one), and such effects can be easily detected 
even with modest sample sizes. An efficient study 
design would be to genotype all informative family 
members using SNP chips for linkage analysis to nar-
row down the genome to a few candidate regions, and 
to capture and sequence these regions (or carry out 
exome sequencing followed by in silico capture of these 
regions, if this is more convenient and cost effective) in 
one or two affected family members to screen for rare,  

Figure 1 | Posterior probability of H0 given the critical significance level and the 
statistical power of a study, for different prior probabilities of H0.  The probability of 
false-positive association decreases with increasing power, decreasing significance level 
and decreasing prior probability of the null hypothesis (H

0
).
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nonsynonymous mutations. Nevertheless, statistical 
power can be reduced both when there is misdiagnosis of 
some individuals owing to phenotypic heterogeneity and 
phenocopies, and when there is locus heterogeneity in  
which mutations from multiple loci all cause a similar 
phenotype.

Some diseases have rare Mendelian forms and com-
mon complex forms that are phenotypically similar. 
Cases caused by dominant mutations (for example, 
familial Alzheimer’s disease and familial breast cancer) 
will usually cluster in multiplex families and are there-
fore easily distinguishable from complex forms. Such 
families can be investigated using the same methodology 
as for Mendelian diseases. However, for a common dis-
ease in which a small proportion of cases are caused by 
recessive mutations, these cases will tend to be sporadic 
and difficult to distinguish from other cases. However, 
as few genes would contain two rare nonsynonymous 
(homozygous or compound heterozygous) mutations in 
the same subject by chance, when this occurs in a patient 
there is a strong possibility that the mutations are causal 
to the disease.

Almost all common diseases have a complex genetic 
architecture that involves multiple risk loci and environ-
mental factors, but the level of complexity seems to differ 
for different classes of disease. Generally, as the sample 
size of GWASs increases, the number of SNPs with evi-
dence of association that reaches genome-wide signifi-
cance will tend to increase, but this rate of increase seems 
to differ for different diseases. Thus, the minimum sam-
ple size that is required to detect any significant SNPs 
differs among diseases, but beyond this threshold a 
doubling of the sample size generally results in approxi-
mately doubling the number of significant SNPs33. For 
some diseases, such as Crohn’s disease and ulcerative 
colitis, the numbers of significant SNPs reached double 
figures when the sample sizes were increased beyond 
~5,000 cases, whereas for type 2 diabetes and breast can-
cer sample sizes of more than 30,000 cases were required 
to reach the same numbers of significant SNPs33. These 
differences in the ease of SNP detection among diseases 
clearly reflect differences in the numbers of susceptibility 
SNPs that underlie the diseases, which in turn are deter-
mined by the level of complexity of the mechanisms and 
processes leading to disease occurrence.

The sample size required for detecting a particular 
genetic variant is determined by both the frequency 
and the effect size of the variant. For population cohort 
studies, power calculations can be simplified by assum-
ing a liability threshold model for disease. This model 
postulates that individual predisposition to disease is 
characterized by an unobserved variable called liability, 
which is continuous and normally distributed in the 
population. The liability is determined by both genetic 
and environmental factors, and disease occurs in an 
individual whose liability exceeds a certain threshold. 
Under this liability threshold model, the non-centrality  
parameter (NCP) (BOX 4) of the association test of the 
SNP in a random sample from the population is directly 
related to the proportion of variance in liability explained 
by the locus (VG), which is in turn approximately 

determined by the allele frequency (p) and the effect size 
(ln(OR)) as follows34:

VG = 2p(1 – p)(ln(OR))2

+ 2p(1 – p)(ln(OR))2π2

3
This implies that low-frequency alleles of relatively 

small effect sizes will be especially hard to detect because 
they will individually account for very little variance in 
liability. For case–control samples, power is still strongly 
influenced by VG, but the relationship is more com-
plex and it is simpler to calculate power directly from 
the assumed odds ratio and the allele frequency of the 
putative risk variant using software such as the Genetic 
Power Calculator (GPC)35.

There is a caveat when specifying the assumed odds 
ratio in a replication study to be the estimate obtained 
from the original discovery sample: the odds ratio esti-
mate is likely to be upwardly biased by the “winner’s 
curse” phenomenon, particularly if the original report 
was a screen of a large number of variants and if the 
original P value was close to the significance threshold36. 
Methods for correcting this bias have been proposed37–39, 
and the corrected effect sizes should be used in power 
calculations of replication studies.

As most current GWASs genotype only a subset of all 
variants in the genome and rely on LD between typed 
markers and untyped variants to increase the coverage 
of the genome, an important determinant of power in 
an association study is the level of LD between the typed 
marker and the true causal variant. If a direct associa-
tion analysis of a causal SNP would provide an NCP of 
λ, then an indirect association analysis of a SNP that has 
correlation R with the causal SNP will have an NCP of 
R2λ (REF. 40). In other words, when a proxy SNP that has 
correlation R with the causal SNP is analysed, (instead 
of the causal SNP itself) the sample size required to 
obtain the same level of statistical power is increased by a  
factor of 1/R2.

The frequency of an allele is an important determinant 
of statistical power for two reasons. First, the phenotypic 
variance explained by a genetic locus is directly propor-
tional to heterozygosity, which is in turn determined by 
the frequencies of the alleles at the locus, under random 
mating. Second, a rare variant is less likely than a com-
mon allele to have a high R2 with SNPs that are included 
in commercial SNP arrays because these SNPs have 
been selected to represent common variation, and the R2 
between two loci that have very different allele frequencies 
is necessarily small. These considerations remain relevant 
in modern studies that use imputation to analyse untyped 
SNPs. The statistical power for such SNPs depends on 
the quality of imputation, which is in turn determined  
by the level of LD between the untyped and typed SNPs 
(or between the untyped SNP and haplotypes formed by 
the typed SNPs). Generally, rare variants are more difficult 
to impute accurately than common alleles.

Another important determinant of statistical power 
is phenotype definition. The ideal phenotype, in terms 
of ease of finding susceptibility variants, should be rare 
rather than common (so that it represents more extreme 
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selection under a liability threshold model), distinctive 
rather than obscure, stable rather than changeable, and 
highly familial. Phenotypes without these favourable char-
acteristics (for example, depression and hypertension) 
may require much larger sample sizes for susceptibility 
loci to be detected. Despite the large amount of resources 
required, genetic studies of such traits may nevertheless 
be warranted because of their public health importance 
and the lack of alternative strategies for elucidating their 
aetiology and mechanisms. In such cases, there may be 
ways of efficiently improving statistical power, for exam-
ple, by taking either longitudinal approaches (that is, 

multiple measurements of the same trait at different time 
points) or multivariate approaches (that is, measurement 
of multiple correlated but different traits) for phenotype 
definition to reduce the influence of temporal fluctuations 
and measurement errors. Other methods to improve sta-
tistical power include sampling patients who are most 
likely to have a high genetic loading (for example, those 
with familial, early-onset, severe and chronic disease), 
and sampling controls who are ‘super normal’ in terms of 
a suitable endophenotype (for example, controls whose 
glucose tolerance is above the population average when 
studying diabetes, for which impaired glucose tolerance 
is an important diagnostic criterion) (BOX 5).

Statistical power is also influenced by the procedures 
used in data analyses. Appropriate data quality control 
to filter out problematic SNPs and subjects helps to 
reduce false-positive associations and to improve power. 
Statistical analyses that take appropriate account of covar-
iates (for example, age and sex) and potential confound-
ing factors (for example, hidden population stratification) 
also tend to improve statistical power. An interesting 
exception is the use of logistic regression in case–control 
studies, in which the inclusion of a covariate can result in 
a reduction in power41. Statistical power is influenced by 
the hypothesis for which the test is designed. For exam-
ple, a test that assumes additive effects would have greater 
power than a test that also allows dominance, if the true 
effects at the locus are indeed additive and do not show 
dominance. Conversely, if the underlying causal variant 
is recessive, then power would be lost by carrying out an 
analysis that assumes additivity, and the analysis should 
consider the overall risk genotype rather than a single 
risk allele. If there is uncertainty regarding the true pat-
tern of effects at a locus, then it might be appropriate to 
use several statistical tests to ensure adequate statistical 
power for all possible scenarios. Although this raises the 
issue of multiple testing, there are proposed procedures 
for dealing with this42–44.

Power for tests of rare variants
Recent advances in large-scale sequencing are driving 
a wave of studies that aim to uncover rare variants that 
may underlie disease risk. Such studies often target the 
coding portion of the genome: exome sequencing can 
be now routinely applied to both Mendelian45 and com-
mon46 diseases. Both population genetic theory47 and 
recent empirical studies48,49 suggest that rare alleles will 
be enriched for functional and deleterious effects and 
will thus be disproportionately represented among dis-
ease alleles. However, sequencing studies of rare varia-
tion face various challenges in their design and statistical 
analyses, most obviously that of low power because one 
major determinant of statistical power is allele fre-
quency. This fact has prompted various methodological  
innovations to improve power (see below).

Here, ‘rare’ refers to a population frequency of less 
than 1% (although some have used 0.5% as the cutoff), 
whereas ‘low’ refers to a frequency between 1% and 5%. 
In large sequencing studies, the majority of variants 
discovered will be rare. For example, in 10,000 haploid 
chromosomes most discovered alleles will be observed 

Box 4 | Non-central chi-squared distribution

The central limit theorem states that a test statistic that consists of additive 
contributions from multiple observations would tend to have a normal distribution in 
large samples. The variance of the statistic is usually standardized to one by 
appropriate scaling. Furthermore, the statistic is usually constructed such that its mean 
is zero when the null hypothesis (H

0
) is true. Remarkably, when the alternative 

hypothesis (H
1
) is true, the distribution is often simply ‘shifted’ so that the mean 

becomes non-zero, whereas the variance remains approximately one (BOX 3).
The square of a standard normal variable has a chi-squared distribution with one 

degree of freedom. Thus, many statistical tests in genetic studies can be expressed in 
either normal or chi-squared forms. Furthermore, when considering H

1
, it is convenient 

to define the square of a normal variable (which has mean μ and a variance of one) to 
have a non-central chi-squared distribution with a non-centrality parameter (NCP, 
which is denoted as λ) which has a mean of μ2 and one degree of freedom. The mean of 
a variable with a non-central chi-squared distribution is equal to the sum of its NCP and 
degrees of freedom, compared with a central chi-squared distribution in which the 
mean is simply equal to its degrees of freedom.

The non-central chi-squared distribution is useful in analytic power calculations91. 
This is because calculating the NCP is often a convenient intermediate step in power 
calculations, as it has a fairly simple relationship to sample size and various parameters 
assumed under H

1
. Moreover, the NCP fully specifies the statistical power for any 

chosen type 1 error rate (see the figure). In particular, for any given set of parameters 
under H

1
, the NCP is directly proportional to sample size, so that it is simple to 

extrapolate the NCP to any sample size from the NCP value that has been calculated 
for a particular sample size.

For the example in BOX 2, the test can be formulated as a chi-squared test by taking 
the square of Z as the test statistic. The NCP of the chi-squared test statistic would be 
2.1262 = 4.522 under H

1
, whereas the critical value for significance is 1.6452 = 2.706. From 

the distribution function of the non-central chi-squared distribution (for example, that 
obtained using the Genetic Power Calculator (GPC)), the statistical power of the test is 
found to be 0.685. If the sample size is doubled to 200 cases and 200 controls, then the 
statistical power can be found by simply doubling the NCP to 9.044 which, when looked 
up in the non-central chi-squared distribution function at 2.706, gives a statistical power 
of 0.913.
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Box 5 | Power calculation for association studies

Power calculation for case–control association studies (BOX 2) involves calculating the genotype (or allele) 
frequencies in cases and controls, and substituting these into the formula for the chi-squared test for equality of 
proportions to give the non-centrality parameter (NCP, which is denoted as λ) for the test. This has been 
implemented in the Genetic Power Calculator (GPC) software35. GPC also provides a power calculator for the 
transmission disequilibrium test for case–parent trio data. However, for rare diseases and minor-effect loci there  
is a convenient method to simplify power calculation for family-based association designs. The rules are that a  
case–parent trio is approximately equivalent to a pair of unrelated case–control individuals, and that a case  
with k unaffected siblings is approximately equivalent to k/(k + 1) pair of unrelated case–control individuals92.  
This allows both case–parent and case–sibling families to be converted to case–control equivalents. For samples 
with a mixture of unrelated cases and controls, case–parent families and case–sibling families, the case–control 
equivalents and NCPs of the three data types can be calculated; the overall NCP can be used to evaluate  
statistical power.

For quantitative traits, the NCP for an association analysis of a random population sample is given by:

2Var(X)
Residual variance of Y

 = N × βλ

In this formula, Y is the trait; X is the allele count at a genetic locus (coded 0, 1 or 2) so that under Hardy–
Weinberg equilibrium the variance of X (Var(X)) is given by 2p(1 – p), where p is the allele frequency at the locus, 
and β is the regression coefficient of Y on X. For a minor-effect locus, the residual variance of Y is not much smaller 
than the total variance of Y, so that the NCP is given by proportion of trait variance explained by the quantitative 
trait locus (QTL) (that is, V

A
) multiplied by the sample size (N). If the trait is not measured perfectly but subject to 

measurement error, then this reduces the NCP for association by attenuating the proportion of trait variance 
explained by the QTL relative to the ideal situation of perfect measurements. Taking the average of several 
repeated trait measurements provides a more accurate measure of the trait. The measurement error variance is 
estimated by 1 – r, where r is the test-retest correlation; taking the average of k repeated measurements inflates 
the proportion of trait variance explained by the QTL from V

A
 to V

A
ʹ:

k
1 + (k – 1)r

VA′ = VA

For randomly recruited sibpairs from the population, association analysis of a quantitative trait can be 
partitioned into a between-sibpair component (the NCP of which is denoted as λ

B
) and a within-sibpair component 

(the NCP of which is denoted as λ
W

)93, which are given approximately by: 
3
2

5
4VA +   VD

2VS + VN
B ≈ λ  and  

1
2 4VA +   VD

VN
W ≈ 

3

λ

In these formulae, V
A
 is the additive QTL variance for the trait, V

D
 is the dominance QTL variance, V

S
 is the 

residual shared variance, and V
N
 is the residual non-shared variance40. Power calculations using these analytic  

NCP expressions have been implemented in the GPC35.
For quantitative traits, one can improve the power of association analyses by oversampling individuals whose 

trait values are either far below or far above the general population average, and by omitting individuals  
whose trait values are near the general population average. Compared with the same number of randomly 
selected, unrelated individuals, this extreme selection design increases the NCP by a factor of Vʹ/V, where Vʹ is the 
trait variance of the selected sample and V is the trait variance of the general population. Thus, the statistical 
power of any selected sample can be calculated from Vʹ as long as V is known. For example, assuming a normally 
distributed trait, ascertaining individuals only from the top 5% and bottom 5% of the distribution yields Vʹ/V ≈ 4.4, 
which means that less than one-quarter of the number of individuals need to be genotyped to preserve power, 
relative to the sample size required from an unselected sample. For sibpair data, appropriate selection according 
to the trait values of the siblings can also increase statistical power94.

For a quantitative trait (Y) and a random sample from the general population, the interaction between a 
quantitative environmental variable (X) and a dichotomous genotype (G; for example, AA and AB combined,  
versus BB) is assessed by a test of the equality of regression coefficients (β

1
 and β

2
) of Y on X in the two genetic 

groups95. If both X and Y have been standardized to have a variance of one, then the NCP for this test is given 
approximately by:

 = Np1p2( 1 – 2)2λ ββ

In this formula, N is the overall sample size; p
1
 and p

2
 are the proportions of individuals in the two genotype 

groups. If an additive genetic model is assumed, the genetic effect coded as allele count (0, 1 and 2) and the 
change in regression coefficient of Y on X per extra allele is I (that is, β

AA
 – β

AB
 = I , and β

AA
 – β

BB
 = 2I), then the NCP is 

given by:

 = N2p(1 – p)I2λ

In this formula, p is the allele frequency, and Hardy–Weinberg equilibrium is assumed. Quanto is a program for 
power calculations of gene–gene and gene–environment interactions96,97.
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C‑alpha test
A rare-variant association test 
based on the distribution of 
variants in cases and controls 
(that is, whether such a 
distribution has inflated 
variance compared with a 
binomial distribution).

Sequence kernel  
association test
(SKAT). A test based on score 
statistics for testing the 
association of rare variants 
from sequence data with  
either a continuous or a 
discontinuous genetic trait.

only once and will not be expected to recur in a fur-
ther 10,000 chromosomes. In 1,000 case–control pairs, 
for a disease of 1% population risk, there is moderate 
power (70%) to detect a low-frequency (1 in 50) allele 
with a dominant threefold increased risk, at genome-
wide significance (P < 5 × 10−8) (see GPC: Case–control 
for discrete traits). For a considerably rarer allele (for 
example, an allele with a frequency of 1 in 2,000), power 
will only be maintained if the effect size is correspond-
ingly greater (in this case, a nearly 40‑fold increased 
risk), which implies a high penetrance of nearly 40%, as 
the absolute disease risk in people without the variant 
will be only slightly less than the population risk of 1%.

Unlike GWASs, rare-variant sequencing studies 
typically have to detect variable sites before testing those 
sites for association with disease. It is possible to separate 
detection and association, for example, by first sequenc-
ing a modest number of samples to detect variants that 
can be followed up by genotyping in a larger sample. 
Whether a variant is detected at the first stage depends 
on the sample size, and the coverage and sensitivity of 
the sequencing and variant calling. One can increase the 
likelihood of detecting disease susceptibility variants by 
sequencing cohorts of affected individuals, although 
this will induce bias if the same case samples are then 
used in subsequent association testing50,51. The two-stage 
logic of sequencing followed by genotyping is embodied 
in the recently designed Exome Chip, in which exome 
sequence data on more than 10,000 individuals were used 
to compile a list of recurrently observed nonsynonymous  
mutations, most of which are rare or of low frequency.

Mendelian diseases. Mendelian diseases are character-
ized by genetic architectures with rare alleles of high 
penetrance and fairly low levels of genetic heterogeneity, 
at least at the level of the locus if not the specific allele. 
Almost all individuals who carry a risk mutation will have 
the disease, and a large proportion of affected individuals 
will share either the same rare mutation or rare muta-
tions in the same gene. Typically, disease mutations will 
be ‘smoking guns’ with clear and deleterious effects, such 
as premature termination, nonsense frameshift insertion 
or deletion, or missense single-nucleotide change leading 
to substitution with an amino acid that has very different 
properties. Given these assumptions, various ‘filtering’ 
approaches52 have been successfully applied to an increas-
ing number of diseases, particularly recessive ones53. 
Given a small sample of related or unrelated cases, vari-
ants are generally filtered by novelty (or extreme rarity); 
by clear functional impact (for example, those that disrupt 
genes) and optionally by mode of inheritance (for exam-
ple, rare homozygous genotypes for recessive disease); 
and by identity-by‑descent sharing and co‑segregation  
with disease in families. Disease-causing genes can be 
identified as those harbouring more putative disease 
mutations than that expected by chance after filtering45. 
As the genetic complexity of the disease increases (for 
example, reduced penetrance and increased locus het-
erogeneity), issues of statistical power quickly become 
paramount. Simulation studies have examined the rela-
tive effect of sample size, locus heterogeneity, mode of 

inheritance, gene and total target size, filtering efficiency 
and sequencing accuracy on the power of exome sequenc-
ing studies in Mendelian diseases54. However, a full treat-
ment that models the sensitivity and specificity of the 
filtering procedure, as well as the genetic architecture of 
the Mendelian disease, has yet to be developed.

Complex diseases. For complex diseases, sequencing 
studies face more difficult challenges than those for 
Mendelian diseases46,55, as many carriers of a given rare 
susceptibility variant are likely to be unaffected and, con-
versely, the variant is likely to be present only in a small 
proportion of affected individuals. Simple filtering based 
on either the frequency of a variant or co‑segregation 
in families will have low sensitivity and low specificity 
to screen for true susceptibility variants. Statistical tests 
for association are therefore needed, despite the low 
frequencies of many of the detected alleles. In response 
to the low power for single-variant tests and the inap-
plicability of Mendelian filtering strategies for common 
diseases, the gene (rather than the individual allele) has 
become a primary unit of analysis for exome sequenc-
ing studies. This approach aims to combine weak signals 
from multiple mutations in the same gene to give a more 
powerful test for association.

The simplest gene-based test compares the frequency 
of rare mutations in a gene in cases to that in controls. 
This is statistically and conceptually similar to a single-
locus test, except that it is based on the aggregated allele 
frequency and averaged effect size for all mutations in 
the gene. A large number of extensions have been pro-
posed56–59, reviewed60,61 and quantitatively compared62–65. 
Gene-based tests differ in whether they assume that 
associated rare mutations will always increase risk as 
opposed to allowing a mixture of risk and protective 
rare alleles in the same gene (for example, the C-alpha 
test66 and the sequence kernel association test (SKAT)67). 
For studies in which super normal controls have been 
ascertained, the application of such two-sided tests may 
be desirable if a priori rare variants with opposite effects 
are likely to coexist in the same gene. For many case–
control studies, in which controls are broadly repre-
sentative of the unselected population, there will be low 
power to detect rare protective effects, and the benefit 
of two-sided tests will therefore be greatly diminished. 
Tests may also differ in the extent to which their power 
is reduced when there is a substantial proportion of null 
alleles; an appropriately constructed score test such as 
SKAT may have an advantage in this regard. Other dif-
ferences between gene-based tests involve the way that 
they weight and group variants, practical differences 
(such as the applicability to quantitative traits and to 
related individuals) and the ability to include covariates.

Strategies to increase power of exome studies
Despite a growing body of literature, the precise meth-
odological detail of the adopted gene-based approach is 
likely to be a less important determinant of success than 
the effect of the underlying genetic architecture of the 
disease. So far, the few published applications of exome 
sequencing in moderately sized case–control sequencing 

R E V I E W S

NATURE REVIEWS | GENETICS	  VOLUME 15 | MAY 2014 | 343

© 2014 Macmillan Publishers Limited. All rights reserved

http://pngu.mgh.harvard.edu/~purcell/gpc/cc2.html
http://pngu.mgh.harvard.edu/~purcell/gpc/cc2.html
http://genome.sph.umich.edu/wiki/Exome_Chip_Design
http://www.hsph.harvard.edu/skat/


studies have yielded broadly negative results68. It there-
fore seems that, similar to GWASs, large sample sizes will 
be necessary for exome sequencing studies to identify 
rare or low-frequency risk alleles. Recent predictions 
from population genetic theory in fact suggest that very 
large sample sizes, probably more than 25,000 cases, will 
be required69. Nevertheless, there are various other ways 
in which power could be increased.

Study design considerations. One can restrict association 
testing to variants that are a priori more likely to be causal 
both to reduce the multiple-testing burden and to avoid 
the dilution of signal by including neutral variants. By fil-
tering or weighting, one could assign priority to nonsense 
alleles over missense alleles or to probable deleterious 
missense alleles (for example, as predicted by tools such 
as PolyPhen2 (REF.70)) over probable benign missense 
alleles. Alternatively, very rare alleles can be assigned a 
higher priority than more common ones, as highly dele
terious mutations are likely to be subjected to negative 
selection. However, current methods for characterizing 
the functional importance of variants are relatively crude, 
and there is an urgent need for novel, more accurate and 
comprehensive approaches for identifying variants that 
are more likely to increase disease risk than others. One 
potentially powerful approach is to assess conservation 
across and within multiple species as whole-genome 
sequence data become more abundant.

Sampling cases or controls from the extremes of an 
appropriate quantitative distribution can often increase 
power71. Such distributions may be either directly observ-
able (such as body mass index and biomarker level) or 
inferred from statistical models (for example, identifica-
tion of controls with unusually high levels of non-genetic 
risk factors on the basis of the residuals from a logistic 
regression model and the assumption that these sub-
jects will be enriched for protective genetic factors72). 
However, it should be acknowledged that the extensive 
sampling and phenotypic assessment required for extreme 
selection may be costly and reduce the overall effective-
ness of this approach. Studying families with multiple 
affected members can increase the power to detect rare 
variants of moderate to high penetrance (which are 
enriched in familial cases compared with sporadic cases). 
Ascertaining cases with a positive family history of the 
disease increases power even if only one member from 
each family is genotyped and analysed in a case–control 
context, and this may indeed be an efficient strategy, even 
though co‑segregation within families of a haplotype with 
disease can provide some additional information55,73,74.

Power might also be increased by including types of 
variants other than single-nucleotide variants (SNVs). 
Although they are harder to call and annotate, insertion 
or deletions, multinucleotide variants and structural vari-
ants (including copy-number variants, translocations and 
inversions) constitute a smaller set of variation (in terms 
of the number of discrete events an individual is expected 
to carry) relative to all SNVs and are more likely to have 
functional effects. For example, in autism, researchers 
have demonstrated rare variant burdens for copy-number  
variants75, de novo point mutations76 and complete 

knockout mutations that arise from rare recessive and 
compound heterozygous loss‑of‑function mutations77.

Analytical approaches. Integrative models that consider 
multiple classes of genetic variants provide another ave-
nue by which power can be increased. For example, this 
has been done by combining genotype data for common 
variants with rare-variant data obtained from sequenc-
ing, and by formulating more powerful joint tests78,79. 
Similarly, an integrative model has been proposed to com-
bine de novo and inherited variants in a gene-based likeli-
hood framework, in which parameters (such as variant 
frequencies and penetrance) are estimated by a hierarchi-
cal Bayes strategy that uses information on genes across  
the genome80. Testing larger collections of variants  
across sets of functionally related genes is a further option 
to increase power, as demonstrated in copy-number  
variant studies75. Sets of genes can be defined, either 
explicitly or implicitly, by generic annotations such as 
Gene Ontology terms, by considering proximity or relat-
edness in protein–protein interaction or gene expression 
networks, or by other domain-specific knowledgebases81.

There is currently a lack of consensus in power cal-
culations for rare-variant sequencing studies on several 
key points. The first issue is how to parameterize multi-
locus genetic models with appropriate joint distributions 
of effect sizes and frequencies to restrict attention to a 
limited number of realistic scenarios (ideally informed 
by population genetic theory69). The second is how to 
account for the technical features of sequencing, such 
as incomplete and biased coverage or variant calling, 
which introduce differences in data quality and there-
fore power across the genome. The third concern is how 
to assess the appropriate multiple-testing thresholds in 
light of the different ways of grouping variants in either 
gene-based or pathway-based analyses; a complication 
is that many tests may be carried out that could never 
achieve nominal significance, such as those involving 
genes with only one or two singleton mutations. Some 
existing and evolving tools address aspects of these 
problems. For example, software such as SimRare82 and 
SEQPower have been developed to contrast the relative 
powers of different analytic approaches under different 
assumed true models. Even when standard test statis-
tics (for example, Pearson chi-squared tests or likeli-
hood ratio tests) are used, analytic power calculations 
that involve rare variants can give rise to biased results, 
as the assumptions that ensure the large-sample (that 
is, asymptotic) properties of the tests may not hold. It 
may therefore be necessary to validate analytic power 
calculations by computer simulations at least for a few 
key scenarios. Another issue that requires further work 
is the potential impact of population stratification on 
rare-variant association tests; a recent study has shown 
type 1 error inflation and power reduction in these tests 
compared with analyses of common variants83.

Similar to GWASs for common variants, meta-analyses  
of multiple studies are likely to be necessary for the 
detection of rare-variant effects in exome sequencing 
studies. The wide varieties of gene-based tests for rare 
variants and the availability of several options — such as 
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the choice of weighting scheme or minor allele frequency 
cutoff — are likely to complicate meta-analyses of exome 
sequencing studies. However, recent proposals of  
using multivariate score tests, which are constructed 
from single-variant test statistics, promise to provide a 
flexible framework for meta-analyses of exome sequenc-
ing studies84,85. Furthermore, the scores statistics and 
their covariance matrix allow many popular rare-variant  
gene-based tests to be constructed, thus providing a 
unified analytic framework for single data sets and 
meta-analyses. It has been shown that the combination 
of summary single-variant statistics from multiple data 
sets, rather than the joint analysis of a combined data set, 
does not result in an appreciable loss of information85, 
and that taking into account heterogeneity in effect size 
across studies can improve statistical power84.

The SKAT program provides a power calculation 
tool that allows the specification of multiple parameters, 
including size of the genomic region (or regions) to be 
tested, the maximum allele frequency of rare variants, 
the proportion of rare variants that increase or decrease 
disease risk, the effect size of individual rare variants 
(which can be constant or can increase with decreas-
ing variant frequency) and the significance threshold86. 
There are currently no guidelines on the appropriate set-
tings for these parameters which, in any case, will depend 
on the genetic disorder and the analysis (that is, whether 
it is gene based or pathway based). In general, for tests 
involving large genomic regions (for example, pathway-
based tests), it would be more realistic to assume that 
fewer variants (for example, 5%) have an effect on risk 
than tests that involve small genomic regions, when it 

may be more reasonable to assume a larger proportion of 
risk-altering rare variants (for example, 20%). The odds 
ratio for rare variants may be as high as 57 — the largest 
estimated effect size in an analysis of rare copy-number 
variants in schizophrenia87.

Conclusion
Significance testing is the most commonly used method 
for evaluating statistical hypotheses in genetic stud-
ies, including GWASs and exome sequencing studies. 
However, as described above, P values are difficult to 
interpret without some consideration of statistical 
power, as an insignificant test can result both from the 
absence of effect and from inadequate statistical power. 
Consideration of statistical power is therefore important 
not only in the design of efficient genetic studies but also 
in the interpretation of statistical findings.

The latest challenges in significance testing and 
power calculations come from the analysis of rare vari-
ants. Although many methods have been proposed, the 
evaluation of their performance is not straightforward 
because of the uncertainties and complexities of the true 
underlying model. Faced with variants of low frequen-
cies and modest effect sizes, new methods are emerg-
ing that attempt to gain statistical power by taking into 
account knowledge of genome function and organiza-
tion. Such methods are well developed for coding vari-
ants but are still in their infancy for regulatory regions of 
the genome. Meanwhile, rapid advances in rare-variant 
gene-based and pathway-based tests are paving the 
way for more powerful exome sequencing studies for  
complex diseases.
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