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ABSTRACT 

 

Multiple facets of sleep neurophysiology, including electroencephalography (EEG) metrics such 

as non-rapid eye movement (NREM) spindles and slow oscillations, are altered in individuals with 

schizophrenia (SCZ).  However, beyond group-level analyses, the extent to which NREM deficits 

vary among patients is unclear, as are their relationships to other sources of heterogeneity 

including clinical factors, ageing, cognitive profiles and medication regimens.  Using newly 

collected high-density sleep EEG data on 103 individuals with SCZ and 68 controls, we first sought 

to replicate our previously reported group-level differences between patients and controls 

(original N=130) during N2 stage.  Then in the combined sample (N=301 including 175 patients), 

we characterized patient-to-patient variability. We replicated all group-level mean differences 

and confirmed the high accuracy of our predictive model (AUC=0.93 for diagnosis).  Compared 

to controls, patients showed significantly increased between-individual variability across many 

(26%) sleep metrics. Although multiple clinical and cognitive factors were associated with NREM 

metrics, collectively they did not account for much of the general increase in patient-to-patient 

variability. Medication regimen was a greater contributor to variability.  Some sleep metrics 

including fast spindle density showed exaggerated age-related effects in SCZ, and patients 

exhibited older predicted biological ages based on the sleep EEG; further, among patients, certain 

medications exacerbated these effects, in particular olanzapine.  Collectively, our results point to 

a spectrum of N2 sleep deficits among SCZ patients that can be measured objectively and at scale, 

with relevance to both the etiological heterogeneity of SCZ as well as potential iatrogenic effects 

of antipsychotic medication.   

 

Keywords: Sleep Spindles, Biomarkers, EEG analysis, Psychiatric Disorders 
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Graphic abstract 
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Significance statement 

 

Sleep neurophysiology, particularly non-rapid eye movement (NREM) fast spindles and slow 

oscillations, is altered in individuals with schizophrenia (SCZ). Here, we confirmed group-level 

differences and additionally identified increased patient-to-patient variability in many NREM 

metrics, which was largely independent of clinical and cognitive differences. In contrast, 

medication regimen significantly contributed to this variability. SCZ patients showed exacerbated 

age-related effects in certain sleep metrics, suggesting an accelerated biological aging process, 

albeit one that may in part reflect the adverse effects of antipsychotics. These findings underscore 

the diversity of NREM deficits in SCZ, providing insights into its etiological diversity, treatment 

response, and prognosis.  
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INTRODUCTION 

 

Schizophrenia (SCZ) is a heterogeneous neuropsychiatric disorder characterized by variable 

combinations of positive and negative symptoms and cognitive deficits. It is highly heritable and 

polygenic 1,2 and has a substantial impact on affected individuals and their caregivers 3. One of the 

most urgent tasks in SCZ research is the identification of objective biomarkers for neurobiological 

deficits to aid in diagnostics, prognostics, patient stratifications, and to guide novel therapeutic 

approaches.  A growing body of literature 4–6, including our own findings 7, points to sleep 

neurophysiology as providing a rich array of putative electroencephalography (EEG) biomarkers 

with robust and replicable group differences between SCZ patients and healthy controls.  Notably, 

we previously showed that sleep-based biomarkers were largely independent of wake EEG metrics 

from event-related potential paradigms 8–10 measured in the same individuals, suggesting the 

sleep EEG offers unique information about the neural underpinnings of SCZ.  

 

However, a biomarker that only tracks with current diagnostic status is arguably of limited value. 

For a heterogeneous disease such as SCZ, biomarkers that support clinically meaningful 

stratification of patients, for example by etiology (neurobiological deficits) or likelihood of 

treatment response, are much needed.  We posited that person-to-person variability in sleep 

micro-architecture may index etiologically relevant heterogeneity among patients.  As group-level 

mean differences tend to reflect only commonalities among patients, biomarkers exhibiting 

increased patient-specific variability may be more likely to reflect distinct continua of risk, 

heterogeneous subtypes of disease pathophysiology, or differential course and response to 

treatment. 

 

In this study, we therefore searched for sleep-architecture metrics showing increased between-

person variability in patients, alongside the standard assessment of differences in group means. 

We next related the sleep metrics to other measures known to vary among patients, namely 

clinical symptoms, cognitive deficits and illness duration.  Whereas an emerging literature points 

to replicable group-level alterations in sleep physiology in SCZ 6, the broader landscape – of 

heterogeneity among SCZ patients as well as specificity across other neurological and psychiatric 

diseases – is less well charted.  A recent review focused on sleep spindles, symptomatology and 
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cognitive deficits in SCZ concluded that small sample sizes and inconsistent methodologies led to 

a high risk of bias and deterred strong conclusions 11.  Despite some support for associations 

between spindles and attention/cognitive processing speed in patients and the role of spindles in 

memory consolidation 12, robust connections between NREM sleep and SCZ symptomatology 

have not been well established 13.  

 

Patient-to-patient variation in sleep architecture may also be attributable to different medication 

regimens.  Psychoactive drugs significantly impact sleep patterns as well as the sleep EEG 14, 

although associations can be complex: they can normalize some aspects of sleep in SCZ but 

disrupt others 15.  Further, a growing literature points to adverse cognitive side effects of 

antipsychotic medication, likely reflecting anticholinergic burden16–18, which is particularly 

relevant given reported links between NREM sleep and cognitive performance11,12. While studies 

of unmedicated SCZ patients have established that sleep abnormalities (notably, spindle deficits) 

persist independent of medication 19, recent reviews have pointed to the need for research to better 

characterize the roles of medications in generating sleep alterations 20,21.  In particular, larger 

sample sizes – such as offered by the current study – will be necessary to resolve the impact of 

different medications on sleep architecture in patients and ultimately to disentangle it from 

underlying disease-associated signatures. 

 

Finally, beyond illness duration per se, variation among patients may reflect the differential 

effects of ageing.  A substantial imaging literature has pointed to accelerated brain ageing in SCZ 

22,23, which may in part account for its increased burden of age-related morbidity and premature 

mortality 24.  The NREM EEG changes profoundly across typical development 25 and delayed or 

accelerated patterns have also been shown to predict diverse pathologies 26,27.  We therefore also 

analyzed the sleep EEG data through the lens of biological/brain age prediction to address the 

hypothesis of accelerated brain ageing in SCZ.  

 

Here we report on our ongoing Global Research Initiative of Neurophysiology on Schizophrenia 

(GRINS) study, in particular the independent second wave of N=103 SCZ patients and N=68 

controls with overnight high-density EEG and extensive clinical, cognitive and demographic data. 

To establish whether sleep macro- and micro-architecture provide a robust and novel window on 

SCZ heterogeneity, we first sought to replicate our previously reported group-level mean 
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differences in sleep physiology 7.  Subsequently, in the combined sample (N=301) we determined 

whether between-individual variability in the same set of metrics was altered in SCZ.  Finally, we 

investigated whether differences could be explained by measured clinical and cognitive factors, 

illness duration and ageing, or medication use (see Figure S1 for schematic illustration of the 

study design). 

 

METHODS 

 

Participants 

 

Data on 301 individuals (175 SCZ and 126 healthy controls [CTR, see full list of abbreviations in 

Table S1]) were collected as part of the Global Research Initiative of Neurophysiology on 

Schizophrenia (GRINS) study (Table 1). A portion of these data (N=130, Wave 1) was collected 

before October 12, 2020 and was used in our prior report 7. Since then, the second wave of data 

(171 additional individuals, Wave 2) was collected following the same protocol and 

inclusion/exclusion criteria as described in Kozhemiako et al., 2022. In brief, all participants were 

aged 18-45 with normal IQ (>70). Patients with schizophrenia or schizoaffective disorder were 

recruited from Wuxi Mental Health Center and diagnosed according to DSM-5. Control subjects, 

without any mental disorders or family history thereof, were recruited from the local community 

through advertisements. Additionally, the following exclusion criteria applied to all participants: 

(1) less than 6 months since electroconvulsive treatment; (2) self-reported sleep disorders or 

barbiturate use; (3) severe medical conditions like epilepsy or head injury; (4) hearing 

impairment (above 45 dB at 1000 Hz); and (5) pregnancy or lactation. With regard to sleep 

disorders, in addition to self-reported frequent difficulty in falling asleep and waking up easily 

during the night, the exclusion criteria also included 1) a diagnosed  sleep disorder (e.g., restless 

leg syndrome) based on chart review, and a STOP-BANG score of 4 or above, indicating a high 

risk of obstructive sleep apnea hypopnea syndrome. Only one patient with SCZ was excluded due 

to present sleep disorders during the recruitment process. Informed written consent was given by 

all participants.  The study conformed to the Declaration of Helsinki and was approved by the 

Harvard TH Chan School of Public Health Office of Human Research Administration (IRB18-

0058) as well as the Institutional Review Board of WMHC (WXMHCIRB2018LLKY003). 
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Data acquisition  

 

All participants underwent three separate visits: 1) to determine eligibility, 2) clinical assessments 

and the collection of demographic and other medical information, and 3) an overnight EEG, 

including an event-related potential (ERP) session in the evening. The ERP paradigms included 

sensory gating, auditory 40 Hz steady-state response and mismatch negativity.  EEG recordings 

used a customized 64-channel EasyCap and the BrainAmp Standard recorder (manufactured by 

Brain Products GmbH, Germany) at a sampling rate of 500 Hz. 

 

Diagnoses of schizophrenia or schizoaffective disorder were validated using the Structured 

Clinical Interview for DSM Disorders (SCID)28.  Control subjects were screened by a psychiatrist 

to confirm the absence of major mental disorders.  Collection of clinical information (the Positive 

and Negative Syndrome Scale (PANSS) 29) and cognitive assessments (the MATRICS Consensus 

Cognitive Battery (MCCB)30 was conducted by a full-time researcher.  PANSS and SCID 

assessments were conducted by trained psychiatrists, within a week of the sleep EEG. Medication 

information was collected during the same visit and total antipsychotic dosage was subsequently 

computed as equivalents of 100 mg of chlorpromazine (CPZ) 31.  

 

MST task description  

 

The Finger Tapping Motor Sequence Task (MST) involved quickly and accurately pressing four 

labeled keys on a computer keyboard with the left hand in a 5-element sequence for 30 seconds 

(a trial). The MST included training and testing runs and was run twice: overnight session with 

training run in the evening (12 trials separated by 30 s rest breaks) and an identical testing run in 

the morning after sleep and morning control session with training on a new sequence (12 trials) 

and testing (6 trials) runs in the morning with only 10 minutes in between. A monetary reward 

was given for total correct sequences to motivate performance similarly to previous studies . The 

primary MST measure was the number of correct sequences per trial, reflecting both speed and 

accuracy. Overnight improvement was calculated as the percentage increase in correct sequences 

from the best three training trials to the first three test trials the next morning. For consistency 

with prior literature, the last three training trials were also used to compute percentage 
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improvement but it did not alter the results. Learning rate during training was computed as an 

average of the best three training trials divided by the first trial performance.  

 

Sleep EEG analysis 

 

Sleep staging was performed manually for 30-sec epochs by a certified polysomnographic 

technician using standard AASM criteria, based on C4-M1, F4-M1, O2-M1, all EOG, and EMG 

channels 32. An open-source package Luna (http://zzz.bwh.harvard.edu/luna/) developed by us 

(SMP) was used to process the sleep EEG data.  EEG channels were re-referenced to linked 

mastoids, down sampled to 200 Hz and band-pass filtered (0.3-35 Hz). Subsequently, all epochs 

of a specific stage (here all analyses focused primary on N2 sleep stage, as in 7) had outliers 

removed or interpolated based on the next steps. Firstly, we detected channels with significant 

and persistent artifacts. Problematic channels were interpolated using spherical spline 

interpolation 33. A channel was designated as bad if over 30% of its data epochs deviated by more 

than 2 standard deviations from the mean of all channels, in relation to any of the three Hjorth 

parameters: activity, mobility, and complexity, as originally proposed by 34. This comparison was 

made within each epoch across all channels. Secondly, we identified outlier epochs by comparing 

them to all other epochs recorded from all EEG channels. This comparison was done using the 

same Hjorth criteria, but with a threshold of 4 standard deviations. Additionally, any epochs with 

maximum amplitudes exceeding 500 μV, or those exhibiting flat or clipped signals for more than 

10% of the epoch's duration, were also marked as outliers and subsequently interpolated. On 

average, 7.6% and 7.8% epochs were removed in SCZ and CTR groups respectively in Wave 2, 

leaving 386 (43-751) and 400 (92-562) epochs in each group. There were no significant group 

differences (p-value > 0.05) in the proportion of epochs removed or the number of remaining 

epochs. 
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Spindle, SOs detection and coupling estimation  

 

Spindles were detected using a wavelet method with specific center frequencies of 11 Hz for slow 

spindles (SS) and 15 Hz for fast spindles (FS) targeting approximately +/- 2 Hz.  Putative spindles 

were identified based on exceeding certain thresholds and temporal criteria described in 

Kozhemiako et.al 2022. As an additional quality control procedure, the relative increase activity 

in non-spindle bands (delta, theta and 20-30 Hz beta) was compared to the increase in spindle 

frequency activity, to exclude non-spindle transients or artefacts that did not primarily reflect 

sigma-band activity. For passing spindles, we estimated their density, amplitude, integrated 

spindle activity normalized by spindle count (ISA), duration, observed frequency, and chirp. 

 

SOs were identified by detecting zero-crossings in the 0.3-4 Hz bandpass-filtered EEG signals 

based on specific temporal criteria (zero-crossing leading to negative peak was between 0.3 and 

1.5 s long; a zero-crossing leading to positive peak was not longer than 1 s) and adaptive/relative 

amplitude thresholds (twice the size of the signal mean). For each channel, SO density, negative-

peak and peak-to-peak amplitude, duration, and upward slope of the negative peak were 

computed. 

 

To assess SO/spindle coupling, SO phase at the spindle peak was estimated using a filter-Hilbert 

method: the circular mean SO phase (angle) and inter-trial phase clustering (magnitude) metric 

were used to quantify consistency of coupling.  SO/spindle overlap was also measured as the 

proportion of spindles overlapping with a detected SO.  To account for differences in spindle and 

SO density, we used randomized surrogate time series to allow for coupling magnitude and 

overlap metrics as Z-scores, relative to the empirical null distribution.  SO phase- spindle 

frequency modulation was assessed by a circular-linear correlation, with SO phase split into 18 

20-degree bins and instantaneous spindle frequency averaged across bins. 
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Spectral power and functional connectivity 

 

Spectral power was estimated using Welch's method, averaging 0.5 to 20 Hz power spectra across 

4-second segments within each 30-second epoch. To assess connectivity between channels, phase 

slope index (PSI) values were calculated for all channel pairs within 10-minutes of randomly 

selected N2 sleep epochs, and normalized based on the SD.  Only channel wise net PSI values (the 

sum of all PSI values for a given channel) are reported here, to reflect whether it was 

predominantly as a sender or recipient of information from other channels. 

 

Biological age prediction based on the sleep EEG 

 

We used a modified version of the model described in 27.  This model used 13 features from the 

sleep EEG and was trained on over 2,500 individuals aged 18 to 80 from the Massachusetts 

General Hospital sleep clinic.  The revised model features and weights are available as part of the 

Luna package (https://zzz.bwh.harvard.edu/luna/ref/predict/).  The model uses 13 features from 

the NREM EEG based on two central mastoid-referenced channels (C3 and C4): mean band power 

(N3 delta &N1 alpha), spectral kurtosis (N2 delta, theta, alpha & sigma; N3 theta), time-domain 

kurtosis (N2 and N3), band power ratios (N3 delta/theta and delta/alpha), FC = 13.5 Hz spindle 

density and number of spindles overlapping a detected SO. 

 

Statistical analyses: group differences in means and association analyses 

 

In total twenty-six metrics were selected for the replication and variability analyses. These metrics 

describe fundamental properties of hypnogram-derived macro-architecture, spectral power and 

connectivity during NREM sleep, and NREM transients (spindles & slow oscillations) and include 

metrics previously reported to be altered in SCZ 35. Moreover, the same twenty-six metrics were 

reported in our previous publication7: here we explicitly attempt direct replication of those prior 

results. We characterized SS and FS separately given prior evidence for distinct topographies, 

functional specificity, and SO coupling properties of ‘FS’ and ‘SS’ spindles 25,36. We also included 

PSI as a measure of functional connectivity during N2 sleep due its insensitivity to volume 

conduction and additional information on the direction of information flow 37.  
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To examine if sleep metrics were different between groups or their association with non-sleep 

variables were significant, we used linear regression models incorporating age and sex as 

covariates: 

 

𝑆𝑙𝑒𝑒𝑝 𝑚𝑒𝑡𝑟𝑖𝑐 ~ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝐴𝐺𝐸 + 𝑆𝐸𝑋 + 𝑒𝑟𝑟𝑜𝑟 

 

where the predictor of interest was either diagnostic status (SCZ vs CTR) or non-sleep variables 

such as clinical factors, medication, and cognitive scores; for analysis of group difference in 

means, the sleep metric represented raw estimates derived from the sleep EEG, typically per 

channel.  

 

To investigate associations between clinical factors, cognitive scores, and medications, we used 

principal components analysis (PCA). This extracted principal components (PCs) from sets of 

multi-channel and possibly multi-frequency metrics based on the SCZ group only.  For each class 

of metric (e.g. spindle density, or spectral power (PSD)), the first principal component was 

selected, except for PSD and PSI, where all components explaining more than 5% of the variance 

were retained (resulting in 4 and 3 PCs, respectively).  For easier interpretability, we flipped the 

sign of some PCs, such that all PCs had consistent directions in their SCZ-CTR difference (the CTR 

data were projected onto the SCZ-derived PCs).  The selected PCs were tested for association with 

clinical factors, cognitive scores, and medications. To control for the effects of multiple 

medications, we performed multiple linear regression, including all drugs simultaneously in the 

model. 

 

Outlier values (> 3 SD from the mean) were removed prior to analysis. We used Glass’s delta to 

estimate the effect size motivated by its tolerance of the differences in variance between groups 

38. 
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Accounting for multiple comparisons 

 

To account for comparisons for EEG metrics defined across multiple channels and potentially also 

multiple frequencies, we utilized a cluster-based permutation using the Freedman-Lane method 

to correct for nuisance variables 39,40, as implemented in Luna. We used a clustering heuristic to 

identify groups of adjacent predictors and tested significance empirically.  Adjacency was 

determined with respect to spatial location (< 0.5 Euclidian distance of channels) and, for some 

metrics, also frequency (< 0.5 Hz for PSD, < 1 Hz for PSI). Clusters were defined based on an 

absolute t-score threshold t=2.  3000 permutations (based on permuting observed residuals 

following Freedman-Lane) were used to construct a null distribution to assess statistical 

significance clusters.  

 

Case-control classification 

 

As previously reported (Kozhemiako et al., 2022), a logistic regression model was trained using 

Wave 1 data to classify SCZ and CTR subjects based on 12 PCs (see Table 2).  After projecting all 

wave 2 individuals into this PC space, we computed the probability of being a case, based on the 

previous model. Age and sex effects were regressed out before fitting the model. Model 

performance was evaluated using the area under the ROC curve (AUC).  

 

Inter-subject variability analysis 

 

Group differences in inter-subject variability were tested using Bartlett’s test for homogeneity of 

variance, with the effects of sex and age regressed out and outlier values (> 3 SD from the mean) 

removed.  To estimate the extent to which clinical, cognitive or medication effects contributed to 

increased between-individual variability in SCZ, we repeated Bartlett’s tests on residuals after 

accounting for that class of covariate.  Specifically, for clinical factors, we controlled for illness 

duration, total antipsychotics dosage and 5-factor severity scores; for cognitive factors, we 

controlled for MST overnight improvement and morning test improvement, MCCB composite and 

domain scores; for medication effects, we controlled for binary variables indicating the use of a 

particular type of medication, including medications used by 10 or more patients. For each sleep 
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metric, we first estimated residuals from a linear regression model combining patients and 

controls with age and sex as predictors, and then further adjusted based on a second Lasso 

regression model for SCZ individuals only, to remove additional variance associated with clinical, 

cognitive or medication differences between patients.  The optimal lambda penalizing factor was 

determined separately for each N2 metric using 10-fold cross-validation. The residuals then were 

compared between groups using Bartlett’s test.   

 

Dimension reduction 

 

In exploratory analyses, we utilized PCA and uniform manifold approximation and projection 

(UMAP) 41 as dimensionality reduction techniques applied to selected sets of sleep metrics: those 

with increased variance in SCZ, or those showing SCZ-CTR mean differences at various 

significance thresholds (p-value < 0.05, p-value < 0.01, p-value < 0.001). As both methods 

yielded results lacking visually evident sub-cluster structures, we did not employ further formal 

clustering methods to attempt cluster identification.  

 

 

RESULTS 

 

GRINS wave 2 comprised N=103 SCZ and N=68 CTR individuals, newly collected under the same 

protocol as wave 1 (see 7 for details).  Demographic and sleep variables are given in Table 1, for 

each wave independently as well as the combined sample (total N=175 SCZ, N=126 CTR).  Wave 

2 closely resembled wave 1 for primary demographic, clinical, cognitive and sleep variables. 

Although wave 2 controls were slightly older with less N3 sleep compared to wave 1 controls (p-

value < 0.01) and wave 1 controls were slightly younger (p-value =0.0104) compared to SCZ 

individuals, in the combined sample there were no significant case-control differences in either 

age or N3 duration. 

 

Consistent with wave 1 findings, in the combined sample the SCZ group showed increased time in 

bed (~1.5 hours, p-value = 9  10-12) and decreased sleep efficiency (effect size [e.s.]= -0.95 SD 
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units, p-value = 7  10-6), primarily driven by longer sleep onset latency.  The SCZ group 

comprised an inpatient sample with a hospital-imposed routine: whereas this implicitly 

controlled certain factors such as light exposure among patients, it also precluded naturalistic 

assessment of sleep/wake rhythms and circadian factors.  Cases and controls were otherwise well-

matched in terms of total sleep time and all stage-specific sleep duration measures (Table 1). 

Replication of sleep alterations reported in wave 1  

 

Following our previous work 7, we computed a battery of metrics mainly focused on the N2 sleep 

EEG.  Specifically, we tested 26 unique classes of metric across seven key domains (Table 2) to 

quantify core elements of sleep macro-architecture, fast and slow spindles, slow oscillations (SO), 

spindle/SO coupling, spectral power (PSD) and functional connectivity (PSI, phase slope index 

summarized channel-wise).  Some metrics were calculated for each of the 57 EEG channels and 

across a range of frequencies, in total yielding 4,746 variables.  To address multiple testing, in 

addition to wave 2 providing an independent replication sample, we further used cluster-based 

permutation to control false positive rates across channels and frequencies, in the initial 

replication analysis as well as subsequent combined sample analyses.  For the latter analyses, we 

also applied false discovery rate correction within each domain. 

 

All previously reported wave 1 sleep EEG group differences replicated in wave 2, based on a 

significant metric-level result following correction for multiple comparisons and a similar 

direction of effect (Figure 1A). For example, in wave 1 FS density at C2 was reduced by 28% in 

SCZ (2.2 vs 3.1 spindles per minute in CTR) and by 30 % (2.3 vs 3.3) in wave 2.  Spatial patterns 

of group differences were broadly congruent between waves, for example, the reduction in SS 

density in posterior channels (Figure 1A, Figure S2). 

 

As expected from the increased sample size, we also detected novel associations in the combined 

sample which did not pass our stringent significance criterion in wave 1 (cluster statistics are 

summarized in Table S2).  These included the SCZ group showing i) longer frontal and shorter 

posterior SS duration (two clusters with maximum effects at Fp1 e.s. = 0.55 SD, p-value = 710-4 

and P1 e.s. = -0.41 SD, p-value = 0.003 respectively), ii) decreased SS frequency in frontal 

channels (at FZ e.s. = -0.57 SD, p-value = 210-5), iii) increased FS/SO coupling magnitude and 

overlap in posterior channels (at PZ e.s. =  0.86 SD, p-value = 5  10-8 and at PO4 e.s. = 0.51 SD, 
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p-value = 8  10-5 respectively).  Only a single metric showed a qualitative difference in the 

evidence for statistical association between waves, namely SO-phase FS-frequency modulation, 

which was increased in frontal channels only in wave 2 (e.g. at AFZ, e.s. = 0.34 SD, p-value 

=0.001). 

 

In addition to replication of individual metrics, we evaluated the performance of our N2-based 

prediction model to classify diagnostic status.  This logistic regression model was trained on wave 

1 data only, using 12 PCs summarizing spindle, SO, spectral power and functional connectivity 

metrics (see Table 2 and Kozhemiako et al., 2022 for details).  Projecting wave 2 individuals into 

the predefined 12-dimensional PC space, classification performance in wave 2 was effectively 

identical to wave 1, with an Area Under the ROC Curve (AUC) value of 0.93 versus 0.94 from the 

original wave 1 analysis (Figure 1B).  

 

Spindle density deficits in SCZ and temporal coupling with slow oscillations (SO) 

 

Having replicated group-level mean differences, subsequent analyses were performed using the 

combined (N=301) sample. In replication and combined analyses (Figure 1), SCZ patients 

showed reductions in fast and slow spindles, as well as differences in the rate of and temporal 

coupling with SO.  To further characterize altered spindle/SO coupling in SCZ, we computed the 

density (count per minute) of SO-coupled and SO-uncoupled spindles separately.  Approximately 

25% to 45% of spindles (depending on channel and spindle class) overlapped (“coupled” with) a 

detected SO (Figure S3). Case/control reductions in overall spindle density reflected 

qualitatively different effects for coupled and uncoupled spindles (Figure 2).   For both fast and 

slow spindles, the overall reductions in spindle densities were largely driven by fewer SO-

uncoupled spindles in patients.  In contrast, controlling for SO-uncoupled spindle density, SO-

coupled spindles either showed no group differences (slow spindles) or even a significant increase 

in patients (fast occipital spindles).  This latter result is consistent with the previous significant 

increase seen for the fast spindle-SO overlap statistic:  in patients there are fewer fast spindles 

overall, although some types (specifically, fast parietal and occipital SO-coupled spindles) are 

relatively over-represented, underscoring that topographical and temporal contexts are 

important to consider when evaluating spindle activity. 
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Greater between-individual variability among SCZ patients across diverse sleep metrics 

 

We next focused on between-individual variability for the sleep metrics in Table 2.  Of these, 

1,232 (26%) exhibited nominally (p-value < 0.05) significant differences, based on Bartlett’s test 

comparing the between-individual variances within the SCZ group versus within the CTR group, 

after removing outliers and adjusting for the effects of age and sex.  Of note, all but 15 significant 

tests pointed to higher variability in the SCZ group (Figure 3A).   

 

Macro-architecture metrics expressed some of the largest variance increases in SCZ.  For example, 

whereas N2 duration showed no significant difference in means (201 vs 209 minutes, p-value = 

0.26), cases had a markedly higher SD of 71, versus 47 for controls (Bartlett p-value = 3  10-6).  

Total sleep time, N3 and REM duration likewise showed similar increases in variability in SCZ.   

This signature of increased SCZ variability was further observed across all domains of N2 micro-

architecture.  Whereas for some domains, metrics exhibiting increased variance among SCZ 

individuals almost always showed concurrent significant mean differences (primarily FS, SO and 

spindle/SO coupling), metrics in other domains also exhibited variance differences in the absence 

of corresponding group difference in means (primarily macro-architecture, SS and PSD domains, 

Fig 3A). 

 

Figure 3B shows SCZ-CTR differences for stage N2 spectral power at a representative frontal 

channel (Fz): whereas slower sigma frequencies (~11.5 Hz) showed different variances (higher in 

SCZ) but equivalent means, faster sigma frequencies (13-16 Hz) showed the opposite pattern, of 

similar variances but a significantly lower mean in SCZ. This pattern was generally more 

pronounced in anterior channels. As a second illustration of these divergent effects, Figure 3C 

shows three exemplar metrics with qualitatively distinct alterations in SCZ: in variance only (N2 

duration), in means only (posterior SS density), or in both (central FS density).  Similarly, primary 

spindle metrics showed distinct patterns for group differences in variances versus means (Figure 

3D). 
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In principle, increased inter-individual variability in SCZ is consistent with the hypothesis that 

the sleep EEG stratifies patients into discrete subtypes.  However, we did not find evidence of 

distinct patient-specific clusters readily emerging from exploratory analyses using either PCA or 

UMAP dimension reductions, whether based on metrics showing increased variances or with 

altered means in the SCZ group (Figure S4).  

  

 

Patient heterogeneity in clinical and cognitive factors  

 

We next asked whether the increased N2 heterogeneity among SCZ patients may be reflecting 

patient-to-patient differences in illness duration, symptoms or cognitive deficits, given that these 

factors did exhibit associations with some sleep metrics (Figure 4A &B). We created new sets of 

sleep metrics for patients, that adjusted for either clinical (illness duration, total antipsychotics 

dosage and PANSS scores) or cognitive variables (MST overnight improvement and morning test 

improvement, MCCB scores), using residuals from patient-only Lasso regressions that fit each 

sleep metric jointly on all clinical or cognitive variables, thereby removing the between-patient 

variability explained by these factors.  Repeating the Bartlett tests, the SCZ group nonetheless 

continued to exhibit significantly higher variabilities for the majority of the previously reported 

1217 metrics: either 1110 or 1139, controlling for clinical or cognitive variables respectively 

(Figures S5A). 

 

The persistence of increased N2 variability in SCZ suggests that objective sleep biomarkers may 

capture disease-relevant factors that are not otherwise well-characterized by existing clinical and 

cognitive measures.  Nonetheless, it does not imply that N2 sleep metrics were unrelated to 

clinical and cognitive factors in patients (Figure 4A &B).  Although a comprehensive 

examination is beyond the scope of this manuscript, we performed a series of secondary analyses 

focused on patient MCCB and PANSS scores in relation to N2 spectral power and spindle density.  

Higher MCCB composite scores were associated with increased occipital and parietal N2 sigma-

range power (maximal at 13.5 Hz, p-value < 0.01, Figure 4C).  Consistent with this, MCCB 

composite scores were also associated with increased fast spindle density (Figure 4D).  

Considering the separate MCCB domains, this effect was most pronounced for 

Attention/Vigilance and Speed of Processing domains and was restricted to fast spindles.   In 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsae218/7761931 by guest on 02 O

ctober 2024



Acc
ep

ted
 M

an
us

cri
pt

contrast, clinical measures (three primary PANSS scores and derived five-factor scores 42) showed 

nominal (p-value <0.05) associations with slow spindle densities at multiple central and frontal 

channels, across most clinical measures, whereby reduced slow spindle activity predicted more 

severe symptoms (Figure 4D).  

 

 

N2 predictors of sleep-dependent motor procedural memory in SCZ 

 

Sleep-dependent MST performance improvement has previously been associated with greater 

%N2 in healthy individuals and fast sleep spindle density in SCZ patients 43–46.   We observed a 

robust attenuation of overnight improvement of MST performance in the SCZ group versus 

controls (percentage, e.s. = -0.99, p-value =410-9, Figure S6), while learning rate during 

training was not different between the groups (p-value > 0.05), consistent with prior reports 46–

48.  However, neither %N2 nor sleep spindle density were associated with overnight MST 

improvement in the SCZ group (Figure 4B).  

 

Medication effects 

 

Medication use showed an array of robust effects on both macro- and micro-architecture sleep 

metrics (Figures 5, S7).  Each patient’s medication use at the time of the sleep study was encoded 

as a binary vector of nine medications (six antipsychotics and three categories of adjunct drugs, 

each used by at least 10 patients) and entered into a case-only linear model to predict each sleep 

metric, controlling for age and sex.  Among antipsychotic medications, olanzapine (N=81 

patients) and clozapine (N=22) affected sleep metrics the most (Figures 5A, 5B), albeit 

sometimes in qualitatively different ways.  For example, whereas olanzapine use was associated 

with decreased N2 proportion (by -10 % compared to patients not taking olanzapine), clozapine 

use had the opposite pattern of increased N2 (+14%, Figure 5B right). Clozapine use was also 

associated with decreased FS density, replicating a prior report 46. 

 

Among adjunct medications, sedative and tranquilizer use (N=45) had the most marked effects 

on sleep micro-architecture, impacting multiple spindle (e.g. increased FS duration, p-value = 
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410-4, Figure S7) and SO characteristics (e.g. altered slopes, p-value = 310-4).  Sedative and 

tranquilizer use was also associated with decreased 1 - 7 Hz power during N2 (cluster p-value = 

0.009, Figure 5C).  Additionally, sedatives and tranquilizers were linked to increased power in 

sigma frequency range. To test whether such effects were specific to N2 sleep we compared them 

to findings during R: while the association in 1-7 Hz power was also present during R, albeit with 

an attenuated effect, the sigma association was specific to N2 sleep. 

 

Given the variability in patterns of medication use, combined with the marked and sometimes 

divergent associations with the sleep EEG, we posited that medication use would account for some 

of the increased variability in sleep metrics found in SCZ.  Adopting the same approach as above 

(adjusting for medication use in patients prior to testing for group differences in variance using 

Bartlett’s test), we observed a greater – but still only partial – drop in the number of metrics 

showing increased variance in SCZ.  The largest declines were in the domain of spectral power, 

from approximately 30% to 15% of all metrics that were significantly more variable, compared to 

the expected rate of 5% given the nominal significance threshold of p-value = 0.05, Figure 5D).  

Nonetheless, across all domains, 712 metrics – a rate far greater than expected by chance – still 

showed greater variance among SCZ patients, compared to only 35 metrics with a higher variance 

in controls. The increase from 15 to 35 variables with significantly higher variance in CTR group 

after we accounted for medication in SCZ group was due to reduced variance in patients (i.e. 

versus controls).  

  

 

Accelerated age-related NREM alterations in SCZ 

 

Finally, we asked whether SCZ patients had greater sensitivity to other factors known to influence 

sleep in the general population – in particular, age and sex (note: these were statistically 

controlled in the above analyses).   In exploratory models including interaction terms allowing the 

effects of age and sex to vary between cases and controls, the most prominent interaction involved 

age and FS density across multiple channels, such that the SCZ group showed greater age-related 

declines (maximal effect at F5, interaction p-value = 4  10-4; 46 channels had an interaction p-

value < 0.01, Figure 6A).  This effect was specific to FS: SS density interaction terms were 

nonsignificant (p-value > 0.05) for all channels.  Sex did not appear to modify case/control 
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differences in either FS or SS (all p-value > 0.05).  Although spindle density decreases in older 

adults 25, in our middle-aged (median age 34, IQR 30.5 – 39) sample FS density was largely 

independent of age in controls (e.g. r = -0.03, p-value = 0.76 at F5).  In contrast, the SCZ group 

showed a pronounced age-related reduction in FS density (r = -0.35, p-value = 4  10-6), 

consistent with an accelerated ageing effect among individuals with SCZ (Figure 6A).  

 

Key macro-architecture metrics including TST also showed significant age  disease interactions. 

Although patients were well-matched to controls in terms of age (t-test and Bartlett test p-value 

= 0.68 and p-value = 0.19, comparing means and variances in age between groups, respectively), 

patients showed a highly significant age-related reduction in TST (r = -0.32, p-value = 1  10-5), 

whereas TST and age were unrelated in controls (p-value = 0.57), yielding a significant age  

disease interaction (p-value = 0.003).  Controlling for illness duration and age-at-onset did not 

alter the TST-age association in patients and neither term was associated with TST conditional on 

age.  Likewise, patient FS density was not associated with either illness duration or age-at-onset 

when controlling for chronological age. 

 

To more directly address the question of accelerated ageing, we used an independently developed 

model to predict so-called brain age from the sleep EEG (27, see Methods for details).  Predicted 

and chronological ages were similarly correlated in patients (r = 0.65) and controls (r = 0.67).  

However, predictions for patients were on average 5.8 years greater than their chronological age 

(p-value < 10-15 one-sample t-test), whereas in controls predicted and chronological ages had 

similar means (-0.1 year difference, p-value = 0.85).  Consequently, the predicted age difference 

(PAD = predicted age – chronological age) was significantly higher in patients compared to 

controls (p-value = 10-12, also covarying for chronological age and sex), consistent with accelerated 

ageing.    

 

In patients, PAD was not associated with duration of illness (p-value = 0.19 in a model controlling 

for chronological age and sex) and, similar to the full SCZ group, earlier-course patients (≤ 5 years 

from diagnosis, n = 43) displayed increased PAD by 6.6 years compared to CTR.  In general, the 

earlier-course subset showed similar differences in means and variances (versus CTR) compared 

to the overall patient group (data not shown). PAD scores also did not show greater variability 
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among SCZ patients compared to controls (Bartlett p-value = 0.27). In controls, the mean PAD 

varied between males (+1.17 years) and females (-1.87 years) significantly (p-value = 0.007).  In 

contrast, the PAD scores in male (+6.4 years) and female (+5.0 years) patients were not 

significantly different from each other (p-value = 0.24).  

 

PAD scores were not associated with clinical (PANSS) or cognitive (MCCB) scores (all p-values > 

0.05), although they were associated with medication use.  Most notably, patients using 

olanzapine (N=81) had significantly (p-value = 210-8) older PAD scores (+8.98 years) compared 

to patients not using olanzapine (N=94; mean +3.08 years).  This effect remained significant (p-

value = 310-6) when jointly controlling for other medications used; in this joint, case-only model, 

clozapine, anticholinergics and emotion stabilizers/antiepileptics were also associated with 

significantly older PAD scores (Suppl. Table 3).  These effects were not driven by only one or 

two model features: for example, similar to the original SCZ-CTR contrast, olanzapine use was 

significantly associated the majority of the model’s features (Table S4).  Consistent with the lack 

of association between PAD and MCCB scores, we did not observe any significant associations in 

cases between cognitive scores and medication use (all p-values > 0.05, e.g. olanzapine-MCCB 

total score p-value = 0.81). 

 

Importantly, core NREM deficits persisted even in the minority (N = 44, 25%) of patients not 

taking any of the medications associated with higher PAD scores (namely olanzapine, clozapine, 

anticholinergics, emotion stabilizers or antiepileptics).  In particular, whereas this selected 

subgroup had PAD scores that were not significantly different from CTRs (p-value = 0.3), we 

nonetheless observed significantly reduced fast spindle densities across all 57 channels versus 

CTRs (all p-value < 0.01, minimum p-value = 510-6) and the extent of this deficit was similar to 

that seen in the majority of patients taking at least one of these medications (case-only p-values 

> 0.05 for all 57 channels, comparing the N = 44 subgroup to the remaining N = 175 – 44 cases). 
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DISCUSSION 

 

In a large high-density EEG study of sleep and SCZ, we found unambiguous support for our 

previously reported alterations of sleep neurophysiology (Kozhemiako et. al., 2022), observing 

comparable effect sizes and directions.  Our predictive model of diagnostic status, previously 

trained on only the first wave of data, rendered effectively identical classification accuracy in the 

independent second wave.  Overall, these replicated results implicate not only reduced fast 

spindle density as a core feature of SCZ, but also multiple aspects of N2 sleep including slow 

spindles, spindle morphology, SO features and spindle-SO coupling, as well as differences in 

spectral power and patterns of functional connectivity.  Our results also support the relevance of 

the distinction between fast and slow spindles: for example, in patients we observed qualitatively 

different patterns of results for these spindle classes with respect to patterns of age-related decline 

in spindle density, as well as differential associations with cognitive versus clinical features.   We 

further identified instances where the topographic and temporal context of spindles played a 

critical role, including the relative increase in SO-coupled posterior fast spindles in patients, 

potentially reflecting the potentiating effect of SO state on spindle generation, which may become 

a more critical factor in individuals with otherwise disrupted spindle-generating circuits.   

 

Independent of group differences in means, patients with SCZ showed significantly increased 

person-to-person variability for many sleep metrics considered.  This echoes previous reports of 

higher between-individual variability in brain morphology 49,50 and functional connectivity 51 in 

SCZ, as well as the long-standing nosological discussion of heterogeneity 52,53.  Such heterogeneity 

could be linked to existence of  quasi-discrete SCZ subtypes – an hypothesis tested by prior studies 

attempting to derive subtypes based on symptom profiles, the presence of affective symptoms, or 

cognitive functioning, but which failed to show clear links to specific neurophysiological 

mechanisms 54. Research examining SCZ and schizoaffective disorder reported that both 

disorders shared key cognitive, social cognitive and neural properties and were indistinguishable 

by those factors 55. Although not a primary focus of this study, preliminary analyses did not 

suggest clearly distinct patient sub-groups on the basis of N2 alterations.  Rather, our results point 

to a continua or spectrum of N2 alterations among patients.  This spectrum of N2 changes may 

reflect impairments in multiple neurocircuits, consistent with the polygenic nature of SCZ disease 

risk that suggests many biological pathways underlying its pathophysiology. 
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Whereas cognitive deficits are a feature of SCZ 11,56, multiple clinical and cognitive factors exhibit 

significant diversity among patients 57,58. Reduced sleep spindles in SCZ have been suggested to 

represent a treatable endophenotype linking SCZ risk genes to impaired cognition 59. Increased 

FS density predicted fewer cognitive deficits (in particular, MCCB attention/vigilance scores) and 

increased SS density predicted less severe symptoms.  However, these associations were generally 

modest, and the observed variability in clinical and cognitive factors could not account for the 

increased patient variability in sleep.  

 

With regard to MST performance, although we replicated prior findings of impaired sleep-

dependent memory consolidation in SCZ 60,61, previous reports linking overnight MST 

improvement and spindle density 43,46 were not supported by the current study.  Future work will 

be needed to resolve these apparent discrepancies, whether they reflect purely statistical (type I 

or type II) errors, or systematic differences in factors such as sample composition, demographics, 

medication regimens or inpatient versus  outpatient settings.  

 

Patterns of medication use induced significant heterogeneity in patient sleep EEG metrics.  

Although several relatively small studies  reported direct, typically acute effects of antipsychotic 

use on sleep 62–65, our study focused on a naturalistic setting of chronic use in a wide range of 

antipsychotics, with patients often on multiple medications concurrently. Nonetheless, consistent 

with our findings, previous studies have shown acute olanzapine use causes reduced spindle 

activity in both healthy controls66 and patients 63, and also identified different effects of individual 

antipsychotic drugs on spindle activity14. Even though all antipsychotics considered here belonged 

to the second-generation (or atypical) class of pharmaceuticals, their associations with the sleep 

EEG were diverse.  All antipsychotics share the mechanisms of inhibiting dopamine D2 receptors, 

while displaying different pharmacology across D1, D3, D4 and D5 receptors, as well as on 

serotonin receptors, adrenergic receptors, M1, and H1 receptors 67. Such polypharmacy on 

multiple G protein-coupled receptors of antipsychotics potentially underlies their effects on 

neurophysiology as some of these receptors play a role in sleep regulation 68,69.  For example, 

animals with a loss of function of the serotonin receptor gene 5-HT1A showed increased NREM 

duration 70. Clozapine is recognized as a potent norepinephrine ɑ -2 receptor antagonist and a 

norepinephrine reuptake inhibitor 71, could influence sleep architecture in patients with 

schizophrenia due to the involvement of the noradrenergic system in regulating the sleep-wake 

cycle 72. More generally, our results underscore the importance of more granular control for 
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medication effects in future studies: one of the most common approaches – using the total 

antipsychotic dosage equivalent to chlorpromazine – lacked significant associations with key 

sleep metrics, despite clear effects of individual medications.  Other medication classes including 

sedatives, commonly used as adjunct medications in SCZ, had large effects on sleep macro and 

micro-architecture, as other have noted 14.  Sedatives increased both slow and fast spindle density, 

consistent with the premise of prior literature that examined their role in treating memory deficits 

in SCZ patients 43,73.   

 

Adjusting for medication use accounted for a substantial proportion of the heterogeneity in sleep 

metrics, based on the number of metrics with significantly increased variance in SCZ.  The 

interpretation of associations with medication use in the sleep EEG is nonetheless challenging: a 

given effect could be 1) a purely epiphenomenal side-effect, 2) a marker of therapeutic action, 

normalizing canonical deficits, or 3) a consequence of non-random prescription of particular 

medications to particular patients, based on clinical course.  That is, associations between certain 

medications and the sleep EEG may not always be simple confounds per se, but instead reflect an 

individual’s particular deficits, an allostatic response to those deficits, or a personalized response 

to treatment, as well as the specific properties of the particular treatment on other molecular 

targets.   

 

Adjustment for medication effects still left a significant portion of the between-patient variability 

in N2 sleep unexplained however, which presumably reflects genetic and environmental risks as 

well as developmental and dynamic sources of intra-individual variability, although there are 

mixed findings regarding the role of genetics in driving between-patient variability.  For example, 

whereas one study found no relation between genetic risk of SCZ and brain structural 

heterogeneity 49, another found a significant association between SCZ polygenic risk and a greater 

number of brain regions displaying deviations in cortical thickness 74.    

 

One possible driver of higher between-individual variability in SCZ is greater reactivity to other 

exogeneous factors that impact sleep in the general population, including demographics.  Indeed, 

patients tended to exhibit greater age-related changes for some key metrics (fast spindle density, 

total sleep time). Such patterns of greater age-related changes, however, was not observed for all 

metrics displaying comparably large case-control differences.  Based on an independent 
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prediction model of brain age from the sleep EEG, patients showed profiles of NREM sleep 

metrics consistent with accelerated ageing.  Although the extent to which biological age as 

predicted from the sleep EEG captures the same phenomena as age predicted from MRI imaging 

(or other modalities including epigenetics) is unclear, our findings were consistent with a recent 

meta-analysis that found increased brain ages in patients compared to controls, but no 

relationship with clinical factors in patients 22.   

 

Also consistent with 22, there was no association between PAD and CPZ equivalent dose, although 

we did find a large effect of olanzapine use, with use being associated with advanced ageing, and 

similar effects for clozapine, anticholinergics and emotion stabilizers/antiepileptics.  These 

findings echo a growing literature suggesting that antipsychotics can have adverse cognitive 

effects driven by their anticholinergic properties 16–18. In our sample, both olanzapine and 

clozapine (that have relatively high anticholinergic burdens) were associated with accelerated 

PADs, as was use of anticholinergics, whereas amisulpride, risperidone and aripiprazole (that 

have lower anticholinergic burdens) were not.  Our study did not find direct associations between 

medication use and cognition. However, given the existing literature  connecting NREM 

physiology and cognitive functioning75,76,  it is intriguing to hypothesize that the sleep EEG 

constitutes a sensitive precursor of cognitive alterations that may arise from the progression of 

disease and/or the detrimental effects of chronic antipsychotics use, analogous to biomarkers 

such as tau burden tracking early stages of Alzheimer’s disease years before symptoms emerge 77.  

Olanzapine has been shown to impact brain morphology, including reduced cortical thickness in 

a placebo-controlled randomized clinical trial78, and these or other effects may be manifest in our 

EEG-based finding of accelerated ageing.  As such, medication effects on the EEG may not solely 

reflect state-dependent and reversible confounding, but instead reveal true physiologic 

differences in the brains of patients, induced chronically through medication side effects.  Given 

that the sleep EEG is more directly transferable to animal-based preclinical studies than cognitive 

testing or MRI brain imaging, it may prove to be a critical assay for studies aiming to develop new 

antipsychotics with lessened adverse effects on cognition.  Studies might also investigate the 

clinical potential for EEG-based predictors of future adverse cognitive side effects for specific 

individuals and medications.  
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Our study is not without caveats and limitations.  Of note, the inpatient context likely impacts the 

extent to which circadian factors and daily rest/activity rhythms play a role.  Although we 

attempted to document and control for medication effects among patients, it is still challenging 

to fully account for such effects (including chronicity of medication use) in the absence of 

unmedicated patients. While we investigated effects of multiple medications in relatively large 

subgroups, medications used by only a handful of patients were excluded from analyses. 

Additionally, examination of acute intra-individual medication effects on sleep parameters in the 

same group of patients was not possible due to our cross-sectional design, focused on patients 

with largely stable medication regimens.  Translational research using animal models may help 

address the impact of acute or chronic administration of these antipsychotics and adjunct 

medications.  In addition, characteristics of drug naïve patients and longitudinal studies may 

provide evidence of sleep EEG metrics changes before and after medication use.  Finally, although 

previous studies reported night-to-night stability in SCZ with respect to spindle deficits over short 

timescales 36,79, our restriction to a single night still limits our ability to disentangle within-patient 

night-to-night variability (over timescales from days to years) from more “trait-like” between-

patient factors. 

 

In summary, the current study offers substantial evidence of robust and replicable alterations in 

sleep neurophysiology as well as increased variability among SCZ patients.  Part of this increased 

variability may be explained by an acceleration of normal age-related changes in patients. Part – 

but not all – may be explained by patterns of medication use, that will be important to more 

directly model and disentangle in future studies aiming to more precisely link clinical and 

cognitive outcomes to sleep physiology.  Group-level mean differences in NREM neurophysiology 

have now been unambiguously established, although the extent to which they aggregate both 

causal and noncausal factors remains to be resolved. The substantial heterogeneity in sleep 

architecture among patients, as well as their cognitive and clinical symptoms, points to the need 

for large, transdiagnostic, demographically diverse, genotypically informative and deeply 

phenotyped samples to characterize the underlying links between sleep and individual patient 

characteristics.  We speculate that sleep neurophysiology may offer a unique window on the 

etiological and genetic diversity that underlies SCZ risk as well as treatment response and 

prognosis. Future efforts should be aimed at elucidating how sleep neurophysiology changes in 

the high-risk group, and their connection to genetic factors, as well as better understanding when 

differences in sleep emerge and their progression over the course of the disorder. Longitudinal 

and other approaches will be necessary to determine whether this increased inter-individual 
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variability is also reflected in altered intra-individual variability, that is, the temporal stability of 

the sleep EEG over different timescales, from seconds to days to years.  Finally, as well as 

potentially predicting future adverse cognitive side-effects, our findings related to medication 

suggest that sleep parameters could serve as pharmacological target engagement markers, 

enhancing our understanding of treatment response in SCZ.   D
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FIGURE CAPTIONS 

 

 

Figure 1. Replication of wave 1 sleep neurophysiology alterations in wave 2 of the GRINS cohort. A 

– absolute effect sizes of group-level mean differences in wave 1 and wave 2 respectively, ordered from 

highest to the lowest (note: the directions of effect were consistent between wave 1 and wave 2).  Metrics 

with significant combined sample SCZ-CTR clusters are displayed as topoplots; the EEG channel with the 

highest absolute t-score was selected for top bar plot. Metrics are ordered from left to right based on 

decreasing effect size in wave 1.  B – SCZ-CTR classification in wave 2 (Right) using a predictive model 

derived from wave 1 data (Left). 

 

Figure 2.  Spindle density deficits in SCZ depend on SO-coupling status. The topoplots represent the 

group differences between SCZ and CTR in spindle density computed based on all, coupled with SOs and 

uncoupled with SOs spindles. The first row displays the results for slow spindles (SS), while the second 

row shows the results for fast spindles (FS). 

 

Figure 3.  Increased variability in the SCZ group across multiple sleep estimates.  A – Left : the 

percentage of sleep variables with significantly (p-value < 0.05) increased variability in SCZ vs CTR 

(magenta bar) and increased variability in CTR vs SCZ (green bar); Right: the percentage of sleep 

variables with increased variability (light shade) and those with both increased variability and altered 

means (dark shade) across seven domains. B – visualization of differences in means and inter-individual 

variances of spectral power at FZ across frequencies during the N2 stage; vertical lines represent 12 and 

14 Hz.  C – examples of sleep variables with the difference in variance (Bartlett’s test p-value in the title 

with effects of age and sex regressed out prior statistical comparison), but not in means (effect size and 

p-value from linear regression controlling for age and sex inside the graph); in mean, but not in variance; 

and in both mean and variance. D – topoplots illustrate the distinct profiles of between-group differences 

in variance (top row) versus mean (bottom row) all channels for FS and SS metrics. Significant channels 

after the FDR adjustment for multiple comparisons (N of tests = 1368 – differences in variance and 

means for SS and FS across 6 metrics across 57 channels – 2 x 2 x 6 x 57) highlighted with a black rim.  

 

Figure 4.  Sleep EEG associations with clinical and cognitive factors.  A – the matrix shows t-scores 

from linear regressions (controlling for age and sex) between sleep features and clinical factors in SCZ. For 

multi-channel variables, we used the first PC (or all PCs explaining > 5% of total variance across channels 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsae218/7761931 by guest on 02 O

ctober 2024



Acc
ep

ted
 M

an
us

cri
pt

x frequencies in case of PSD and PSI) derived separately for each metric and aligned all PCs by the sign 

of the difference between SCZ and CTR means (i.e. red means that clinical factor was associated with 

metric exhibiting more SCZ-like pattern and blue – CTR-like pattern). Stars mark associations with p-value 

< 0.01.  The horizontal bar below the matrix illustrates SCZ-CTR differences in the corresponding variable: 

blue = decrease, red =increase, white =no difference; B – same as A but for the cognitive (instead of clinical) 

variables. C – the graph illustrates the association between the total MCCB score and spectral power across 

all channels (lines) in the frequency range of 0.5-20 Hz. Channels and frequencies displaying association 

above the nominal significance threshold of p-value <0.05 are highlighted in orange and with p-value <0.01 

in red. D – topoplots represent channels where the association between spindle density and total MCCB 

score (top two rows) or PANSS scores (bottom two rows) were nominally significant (p-value <0.05). 

 

Figure 5.  Sleep EEG associations with medication use in SCZ. A – the matrix shows t-scores from a 

multiple linear regression where all medication groups were included as well as age, sex and illness 

duration. between sleep features and binarized medication use in SCZ (where each medication is included 

separately). For multi-channel variables, we used the first PC (or all PCs explaining > 5% of total variance 

across channels x frequencies in case of PSD and PSI) derived separately for each metric and aligned all 

PCs by the sign of the difference between SCZ and CTR means (i.e. red means that clinical factor was 

associated with metric exhibiting more SCZ-like pattern and blue – CTR-like pattern). Stars mark 

associations with p-value < 0.01.  The horizontal bar below the matrix illustrates SCZ-CTR differences in 

the corresponding variable: blue = decrease, red =increase, white =no difference; B – examples of 

medication effects on FS density, SS density, SO density, FS coupling magnitude and N2 proportion. Each 

arrow indicates an effect (t-score) of a certain medication on a sleep variable from a multiple linear 

regression where all medication groups were included as well as age, sex and illness duration. Nominal 

significance (p-value <0.05) is marked by a white star inside the arrows. For multi-channel metrics, the 

largest effect across all channels is presented. The horizontal dashed line indicates the effect size of the 

group difference between SCZ and CTR in the corresponding metric (at the channel with the largest effect 

size for multi-channel variables). C – sedatives and tranquilizers effect on spectral power in N2 and REM 

across frequencies (solid lines) in comparison to SCZ-CTR differences (dashed lines) at Cz channel  D – 

left bar plot shows the percentage of all sleep variables still with higher variance in SCZ or CTR group after 

effects of all common medications have been simultaneously regressed out using LASSO regression for 

SCZ group, compared to the original estimates (horizontal dashed lines); the right bar plot is similar but 

stratified by domain (denominator for percentages is the number of variables in the domain); original 

estimates are marked by triangles.  
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Figure 6.  Fast spindle density shows differential age-related decline in SCZ. A – the topoplots show 

the associations between FS density and age, in either a case-only (left plot) or control-only (middle plot) 

analysis, and the interaction P-values from the joint models (right plot); associations p-value < 0.01 are 

marked by dark circles; B – scatter plots showing FS density at F5 as a function of age separately in cases 

and controls. C – scatter plots showing predicted and observed ages separately in cases and controls; age 

prediction was based on a modified version of the model described by 27).    
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TABLES 

 

 

Characteristics 

Wave 1 Wave 2 Combined 

SCZ CTR SCZ CTR SCZ CTR 

N 72 58 103 68 175 126 

Sex, females (%) 25 (35%) 22 (31%) 49 (48%) 31 (30%) 74 (42%) 53 (30%) 

Age, years 35±7 32±6.3 34±7.5 36±6# 35±7.3 34±6.5 

Maternal education, higher than 

middle school (%) 
30 (42%) 14 (24%) 29 (28%) 21 (31%) 59 (34%) 35 (28%) 

Paternal education, higher than 

middle school (%) 
31 (43%) 22 (38%) 37 (36%) 21 (31%) 68 (39%) 43 (34%) 

       

Illness duration, years 12±7.0  10±6.9  11±7.0  

PANSS positive 15±5.8 ª  17±6.3 ª  16±6.1 ª  

PANSS negative 16±5.7 ª  18±6.7 ª  17±6.4 ª  

PANSS general 33±9 ª  35±10.9 ª  34±10.1 ª  

SCZ duration, years 12±7  10±6.6  11±7  

MCCB total 43±9.9  44±8.7  44±9.2  

Equivalent antipsychotic dose, 

mg 

612±262.

8 
 

676±244.

6 
 

649±253.

6 
 

       

Time in bed, mins 
532±55.

7* 

467±44.

5 

540±43.

9* 

456±27.

7 

537±47.

8* 

461±36.

8 

Total sleep time, mins 378±95.1 382±63.1 398±84.2 377±48.1 390±88.9 376±59.4 

Wake after sleep onset, mins 65±44.1 49±34.4 70±46.8 55±39.7 67±43.9* 52±37.4 

Sleep efficiency (TST/TIB) 73±14.1* 82±10.9 74±13.8* 83±9.5 74±13.8* 82±10.1 
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Sleep maintenance efficiency 

(TST/start-end of sleep) 
81±13.8 86±10.2 85±9.8 87±8.7 83±11.9* 87±9.4 

N1 duration, mins (%) 
42±26.2 

(11%) 

32±17.3 

(9%) 

33±16.8 

(9%) 

33±16.5 

(9%) 

37±20.4 

(10%) 

32±16.8 

(9%) 

N2 duration, mins (%) 
186±69.8 

(50%) 

204±48.2 

(53%) 

209±72.2 

(53%) 

217±37.7 

(57%) 

201±73.5 

(52%) 

211±43.2 

(56%) 

N3 duration, mins (%) 
76±49.8 

(21%) 

80±31 

(21%) 

72±48.4 

(18%) 

60±26.5# 

(16%) 

74±48.9 

(19%) 

69±30.3 

(18%) 

REM duration, mins (%) 
66±37.6 

(17%) 

65±25.1 

(17%) 

76±34.4 

(19%) 

66±22.9 

(18%) 

72±36.1 

(18%) 

65±23.8 

(17%) 

REM latency, mins 121±55.2 115±59 112±57.4 97±38.6 116±56.5 105±49.8 

Number of cycles 4±1.4 4±0.7 4±1.2 4±0.9 4±1.3 4±0.8 

Cycle duration, mins 99±28.3 104±21.9 97±25.2 93±18.5 98±26.4 98±20.8 

 

Table 1 Key demographic and clinical variables stratified by wave 

* – differences between SCZ and CTR groups (p-value < 0.01) 

# – differences between Wave 1 and Wave 2 within the diagnostic group (p-value < 0.01) 

ª – such scores are considered to represent mild symptoms  
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Domain # of 

metrics 

Stratifications  # of 

tests 

Multiple comparison 

correction for 

replication  

# PCs extracted 

for the 

prediction model  

Macro-

architecture 
9 

 4 stages (for 2 

metrics) 
15 

None (p-value threshold 

< 0.01) 
- 

Slow oscillations 

(SO) 
5  57 channels 285 

Cluster-based across 

channels 
3 

Spindles (SS & FS 

as two domains)  
6 

 2 spindle 

frequencies 

 57 channels 

684 
Cluster-based across 

channels 
4 

Spindle/SO 

coupling  
4 

 2 spindle 

frequencies 

 57 channels 

456 
Cluster-based across 

channels 
- 

Channel-wise 

connectivity (PSI) 
1 

 18 frequencies 

 57 channels 
1026 

Cluster-based across 

channels & frequencies 
3 

Spectral power 

(PSD) 
1 

 40 frequencies 

 57 channels 
2280 

Cluster-based across 

channels & frequencies 
2 

 

Table 2 Sleep metrics tested in Wave 1 (Kozhemiako et al., 2022) and tested for replication 

in Wave 2. Specific metrics for macro-architecture included time in bed, total sleep time, sleep onset 

latency, sleep maintenance efficiency, wake after sleep onset time, duration and proportion of N1, N2, 

N3, R stages, R latency, sleep cycle duration; for SOs – density, duration, negative-peak amplitude, 

peak-to-peak amplitude, slope; for spindles – density, amplitude, duration, ISA, average frequency, 

chirp; for Spindle/SO coupling – coupling magnitude, coupling overlap, coupling angle and phase-

frequency coupling. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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