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A B S T R A C T   

Profiles of sleep duration and timing and corresponding electroencephalographic activity reflect brain changes that support cognitive and behavioral maturation and 
may provide practical markers for tracking typical and atypical neurodevelopment. To build and evaluate a sleep-based, quantitative metric of brain maturation, we 
used whole-night polysomnography data, initially from two large National Sleep Research Resource samples, spanning childhood and adolescence (total N = 4,013, 
aged 2.5 to 17.5 years): the Childhood Adenotonsillectomy Trial (CHAT), a research study of children with snoring without neurodevelopmental delay, and 
Nationwide Children’s Hospital (NCH) Sleep Databank, a pediatric sleep clinic cohort. Among children without neurodevelopmental disorders (NDD), sleep metrics 
derived from the electroencephalogram (EEG) displayed robust age-related changes consistently across datasets. During non-rapid eye movement (NREM) sleep, 
spindles and slow oscillations further exhibited characteristic developmental patterns, with respect to their rate of occurrence, temporal coupling and morphology. 
Based on these metrics in NCH, we constructed a model to predict an individual’s chronological age. The model performed with high accuracy (r = 0.93 in the held- 
out NCH sample and r = 0.85 in a second independent replication sample – the Pediatric Adenotonsillectomy Trial for Snoring (PATS)). EEG-based age predictions 
reflected clinically meaningful neurodevelopmental differences; for example, children with NDD showed greater variability in predicted age, and children with Down 
syndrome or intellectual disability had significantly younger brain age predictions (respectively, 2.1 and 0.8 years less than their chronological age) compared to age- 
matched non-NDD children. Overall, our results indicate that sleep architecture offers a sensitive window for characterizing brain maturation, suggesting the po
tential for scalable, objective sleep-based biomarkers to measure neurodevelopment.   

1. Introduction 

Brain structure and function undergo drastic transformations over 
the first two decades of life (Stiles & Jernigan, 2010). Over the same 
period, there are also profound changes in multiple facets of sleep, 
potentially reflecting developmental programs of brain reorganization 
(Knoop et al., 2021). Given abundant evidence for the critical impact 
that sleep has on memory consolidation and working memory, de
viations from normal sleep patterns during childhood and adolescence – 
the most learning-intensive periods in life – might have long-lasting 
consequences (Kopasz et al., 2010). For example, active processes tak
ing place during sleep support synaptic pruning and connectivity 
restructuring (Buchmann et al., 2011; Tononi & Cirelli, 2014). A more 
precise characterization of normative childhood trajectories of sleep 
may therefore aid our understanding of brain developmental processes 
and shed light on how subsequent cognitive and behavioral dysfunction 
can emerge. 

Children with neurodevelopmental disorders (NDD) and related 

diagnoses including epilepsy are exceptionally vulnerable to sleep 
problems (Kamara & Beauchaine, 2020; Robinson-Shelton & Malow, 
2015). Sleep dysregulation has been documented in individuals with 
autism spectrum disorder (ASD) (Souders et al., 2017), attention deficit 
/ hyperactivity disorder (ADHD) (Becker, 2020), cerebral palsy (Simard- 
Tremblay et al., 2011), Down syndrome (Stores & Stores, 2013), and 
epilepsy (Larson et al., 2012). Comorbid conditions that commonly 
accompany clinical manifestation of NDDs, including intellectual 
disability, have also been associated with sleep abnormalities (Surtees 
et al., 2018). 

However, the majority of these reports focused on a single disorder 
despite evidence of trans-diagnostically shared risk factors and patho
genic mechanisms, especially for psychiatric disorders (Gandal et al., 
2016; Thapar et al., 2017). A second limitation is that the most-studied 
aspects of sleep have been macro-level metrics (e.g. time in bed) 
approximated by parental report. Such measures are inherently limited 
with respect to characterizing brain activity. In contrast, electrophysi
ological characterizations of sleep micro-architecture reflect underlying 
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processes during different sleep stages more directly. One recent review 
described the presence of sleep oscillation (e.g. spindles, slow oscilla
tions) abnormalities among NDDs but also highlighted the scarcity of 
relevant studies and limited sample sizes which, combined with varying 
age ranges and inconsistent methodologies, precluded strong conclu
sions (Gorgoni et al., 2020). 

Across the lifespan, when investigating age-related change numerous 
studies have adopted the paradigm of predicting chronological age 
based on neuroimaging or other data sources, on the assumption that its 
deviation from observed age – the brain age gap – is a putative marker of 
overall brain health. Compared to healthy controls, altered “brain age 
gaps” have been observed in various adult-onset disorders and condi
tions including Alzheimer disease, mild cognitive impairment, schizo
phrenia and multiple sclerosis (Baecker et al., 2021). Accelerated aging – 
larger positive brain age gaps – has also been shown to follow traumatic 
brain injury (Cole et al., 2015). Conversely, opposite patterns in children 
born very prematurely have been interpreted as reflections of delayed 
brain development (Franke et al., 2012). Although the majority of 
studies on brain age used structural MRI data, with predictions usually 
achieving high correlations (r > 0.9) with chronological age (Franke & 
Gaser, 2019), recent reports in adults demonstrated that the sleep EEG 
can also give comparable results (Nygate et al., 2021; Sun et al., 2019). 
In aggregate, these findings suggest that sleep EEG features track 
strongly with age and may be valuable for mapping typical and atypical 
childhood development. 

In the present study, we used polysomnography (PSG) data from a 
large clinical cohort to comprehensively chart the developmental tra
jectories of metrics derived from sleep electroencephalograms (EEG) 
across childhood and adolescence. Based on clinical records, we initially 
removed individuals with any of six major clinical groups including 
NDDs and used data from remaining individuals (N = 1,828, 2.5 – 17.5 
years) to characterize neurodevelopment in non-NDD sample. We 
further validated findings in an independent sample of generally healthy 
children with snoring. This latter group of children participated in a 
clinical trial and were screened to be free of severe neurodevelopmental 
delay (estimated by the Differential Ability Scales II), although they had 
a more restricted age range (N = 1,213, 4.5 – 10 years). Based on the 
profile of associations we detected, we then developed a multivariate, 
joint model to predict chronological age as a function of sleep macro- 
and micro-architecture. Specifically, we tested 1) whether such a model 
was transferable between different studies and populations, and 2) 
whether deviations between predicted and chronological age distin
guished children with NDD from non-NDD children. For the last two 
goals we employed two additional datasets: the Pediatric Adeno
tonsillectomy Trial for Snoring, (PATS, N = 627 children with snoring) 
and the Cleveland Family Study (CFS, N = 730), a family-based study 
covering a wide age range from 6 to 88 years. 

2. Results 

The primary discovery dataset comprised 2,800 individuals with 
whole-night PSGs from the Nationwide Children’s Hospital (NCH) Sleep 
Databank (accessed via the National Sleep Research Resource, NSRR 
(Zhang et al., 2018)). Based on ICD codes, we defined six subsets within 
the NCH sample based on the presence of a diagnosis of the following 
neurodevelopmental and childhood onset disorders: ASD, ADHD, intel
lectual disabilities, Down syndrome (DS), cerebral palsy (CP) and epi
lepsy (for brevity, below we use “NDD group” to refer to these sub- 
cohorts although we acknowledge that epilepsy is usually not classi
fied as an NDD). We selected these six subgroups based on each having 
N > 100 subjects in the full dataset and previous reports of alterations in 
sleep (Becker, 2020; Larson et al., 2012; Simard-Tremblay et al., 2011; 
Souders et al., 2017; Stores & Stores, 2013; Surtees et al., 2018) (see 
Table 2 for demographic details, and Sup. Table 1 for diagnostic details). 
There was a considerable overlap between NDD diagnoses (Sup. Fig. 1a). 

As expected in this clinically-referred and ascertained sample, most 

NCH individuals had a sleep-related clinical diagnosis, precluding a 
straightforward definition of a “healthy control” comparison group. 
Although we refer to the “non-NDD sample” of NCH, we note that the 
individuals therein collectively had more than 9,000 unique diagnostic 
codes in their medical records, for both acute and chronic disorders 
(although not necessarily contemporaneous with the PSG). For example, 
there were diagnoses of cough (N = 1176), obesity (N = 793), skin rash 
(N = 633), unspecified disturbance of conduct (N = 215) and anxiety 
disorder (N = 210). Excluding the abovementioned six NDD groups, 93 
% of participants had one or more sleep-related diagnostic codes 
including sleep apnea, insomnia, hypersomnia and others, although 
sleep disorders were more prevalent still among the NDD groups (Sup. 
Fig. 1b). 

To address possible medication effects on sleep architecture, we 
further identified individuals across the NCH sample who were pre
scribed medications likely to affect sleep at a time overlapping the PSG 
recording. Only 14 % (262 out of 1,829 non-NDD NCH individuals) of 
the NCH sample had such medication prescribed at the night of PSG, 
with a majority being antihistamines (9 %) (Sup. Fig. 1c, Sup. Table 2). 
The proportion of individuals prescribed sleep-impacting medication 
during PSG was substantially higher among the NDD subgroups (42 %). 
Medication use was therefore added as a covariate in our primary ana
lyses (see Methods for more details). 

For our initial analyses of normative age-related changes in sleep we 
excluded the NDD groups, resulting in a final sample of N = 1,828 
(detailed demographic information in Table 1). To provide an inde
pendent replication cohort, we obtained PSGs from N = 1,213 in
dividuals from the Child Adenotonsillectomy Trial (CHAT) study, 
comprising children with reported snoring who were screened to be 
without neurodevelopmental delay. 

2.1. Sleep macro-architecture in children without NDD 

Macro-architecture metrics (i.e. those derived from the hypnogram 
based on manual staging) showed substantial age-related changes. 
Congruently in both samples, total sleep time (TST) exhibited a marked 
linear reduction with age (controlling for race/ethnicity and sex) in both 
NCH (r = -0.26, p < 10-15) and CHAT (r = -0.13, p = 9 × 10-6), as did 
sleep maintenance efficiency (SME) (r = -0.17, p = 2 × 10-12 in NCH, r =
-0.07, p = 0.021 in CHAT) (Fig. 1A). Age-related effect sizes in CHAT are 
expected to be attenuated and/or more variable than in NCH, due to the 
narrower age range. Sleep also grew more fragmented with age in both 

Table 1 
Demographics characteristics (excluding NDD groups).  

Variables Macro-architecture Micro-architecture 
power & spindles 

Micro-architecture 
SO & coupling  

NCH CHAT NCH CHAT NCH CHAT 

N 1828 1213 1744 1043 1512 996 
N of females 877(48 

%) 
632 
(52.2 
%) 

840 
(48.2 %) 

533 
(51.2 
%) 

736 
(48.7 %) 

515 
(51.8 
%) 

White 1179 
(64.5 %) 

485 
(40 %) 

1138 
(65.3 %) 

432 
(41.4 
%) 

983(65 
%) 

411 
(41.3 
%) 

Black 391 
(21.4 %) 

573 
(47.2 
%) 

368 
(21.1 %) 

479 
(45.9 
%) 

326 
(21.6 %) 

458 
(46 %) 

Other 182(10 
%) 

146 
(12 %) 

167(9.6 
%) 

123 
(11.8 
%) 

143(9.5 
%) 

118 
(11.8 
%) 

Unknown 76(4.2 
%) 

9(0.7 
%) 

71(4.1 
%) 

9(0.9 
%) 

60(4 %) 9(0.9 
%) 

Age, M(SD) 8.6(4.3) 7.1 
(1.4) 

8.5(4.3) 7(1.4) 9(4.3) 7.1 
(1.4) 

Age range 2.5–17.5 4.5–10 2.5–17.5 4.5–10 2.5–17.5 4.5–10 

Please see methods for description of the QC procedures that lead to different 
sample sizes for specific analyses. 
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samples, based on increases in the sleep fragmentation index (SFI) and 
duration of wake after sleep onset (WASO). The macro-architectural 
feature showing the strongest age-related change in both datasets was 
the number of NREM sleep cycles (r = -0.38, p < 10-15 in NCH and r =
-0.13, p = 4 × 10-6 in CHAT), which remained significant even after 
covarying for TST (p < 10-15 in NCH and p = 0.002 in CHAT). At the 
same time, the average duration of sleep cycles increased with age in 
both samples, although the number of cycles was still the greatest 
determinant of TST (e.g. in NCH, r = 0.5 for cycle number compared to r 
= 0.12 for cycle duration). 

As others have reported (Baker et al., 2016; Feinberg et al., 2012), 
sleep stage composition changed profoundly across this developmental 
period (Fig. 1B). We observed similar effects in both cohorts, with one 
exception for N1 (Fig. 1B, top row). N1 duration also showed the largest 
absolute difference between the datasets, possibly reflecting variations 
in manual staging protocols and the intrinsically low construct validity 
of N1 as a distinct and atomic physiological state. 

Stage N2 duration increased with age from 177 to 201 min between 4 
and 16 years of age in NCH sample (p < 10-13 in NCH, p = 0.003 in 
CHAT). In contrast, N3 sleep reduced with age from 126 min in 4-year- 
olds to 81 min in 16-year-olds (p < 10-15 in NCH and p = 10-5 in CHAT) 
suggesting an age-related reduction in mean NREM depth. In general, 
the proportion of time spent in all NREM (stages N1, N2 and N3) 

increased with age (r = 0.29, p < 10-15 in NCH and r = 0.19, p = 3 × 10- 

10 in CHAT) while stage R displayed age-associated reduction in both 
duration and proportion (p < 10-15 in NCH and p < 10-13 in CHAT) from 
92 to 64 min between 4 and 16 years. 

Further, REM latency computed with regard to sleep onset increased 
with age (r = 0.2, p < 10-15 in NCH, r = 0.13, p = 7 × 10-6 in CHAT). 
Although there was evident difference in R latency between the two 
cohort, the estimates were comparable to the previous reports summa
rized in (Scholle et al., 2011). There were also fewer transitions between 
NREM and R periods with age in both datasets. 

2.2. Sleep EEG spectral characteristics 

Within sleep stage, spectral power across classical frequency bands 
displayed large age-dependent changes (Fig. 2), most notably a reduc
tion in absolute spectral power in slower frequency bands (e.g. the 
largest effect size is illustrated in Supp. Fig. 2 A – delta band absolute 
power during R stage, r = -0.82 in NCH and r = -0.3 in CHAT). These 
effects likely reflect gross changes in the amplitude of the sleep EEG 
(most evident for slower bands that have higher power due to the 1/f 
nature of the power spectrum); that they were observed uniformly 
across sleep stages and channels suggests that these effects may not be 
specific to sleep neurophysiology (versus gross anatomical changes, for 

Table 2 
Distribution of Gender and Age by NDD group and Availability of Sleep Data in the NCH cohort.  

Disorders Macro-architecture Micro-architecture 
power & spindles 

Micro-architecture 
SO & coupling 

N (N of females) Age, M(SD) 
range 

N (N of females) Age, M(SD) 
range 

N (N of females) Age, M(SD) 
range 

ASD 196 (45) 9.5 (4.3)* 2.5–17.4 169 (39) 9.3 (4.3)* 2.5–17.4 141 (30) 9.6 (4.3) 2.7–17.1 
ADHD 525 (149) 10.9 (3.5)* 2.6–17.5 483 (136) 10.9 (3.5)* 2.6–17.5 428 (119) 11.2 (3.5)* 2.6–17.5 
Intellectual disability 167 (60) 10.9 (3.7)* 2.9–17.4 122 (45) 11 (3.6)* 

2.9–17.4 
95 (33) 11.3 (3.6)* 2.9–17.1 

Down Syndrome 140 (56) 8.1 (4.4) 2.5–17.4 122 (49) 8.2 (4.5) 
2.5–17.4 

70 (23) 8.7 (4.7) 
2.5–17.3 

Cerebral Palsy 138 (60) 7.5 (3.8)* 2.6–17 93 (48) 7.6 (3.8)* 2.6–17 79 (41) 8 (3.8)* 
2.6–17 

Epilepsy 242 (104) 8.7 (4) 
2.5–17.4 

179 (84) 9 (3.8) 
2.5–17.4 

151 (72) 9.2 (3.8) 2.6–17.4 

* - p < 0.05: mean age is significantly different compared to the rest of the sample. 

Fig. 1. Developmental changes in sleep macro-architecture. A – Sleep macro-architecture metrics stratified by age (3-year nonoverlapping windows from 2.5 to 17.5 
years in NCH databank and 2-year nonoverlapping windows from 4.5 to 10 years in CHAT). The error bars represent 95 % confidence intervals for the mean. B. The 
top row represents duration of sleep stages in minutes from 3 to 16 years (N1 – light blue, N2 – blue, N3 – dark blue, R – red); the second row is as for A, for N2, N3, R 
proportions with respect to total sleep time. Total sleep time (TST), sleep maintenance efficiency (SME), sleep fragmentation index (SFI), wake time duration after 
sleep onset (WASO), transition index between NREM and R sleep (TI NR-R). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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example). 
In contrast, absolute sigma power increased with age most strongly 

during N2 (p < 10-15 in NCH and p < 0.001 in CHAT across all channels 
with strongest effects at O1, r = 0.39 and r = 0.16 for NCH and CHAT 
respectively). A smaller but still significant increase was observed dur
ing N3, but not REM. Modelling with higher-order age terms suggested a 
nonlinear trajectory (based on Akaike’s and Bayesian information 
criteria), reflecting a slight decline in power occurring in adolescence 
(Fig. 2). Relative sigma power (normalized by total power 0.5 – 35 Hz to 
account for age-related changes in total power) similarly showed the 
strongest age-related changes (e.g. during N2 at O1, r = 0.76 in NCH and 
r = 0.4 in CHAT, Supp. Fig. 2 B, with similar effects in N3, all p < 10-15 in 

NCH and p < 10-5 in CHAT). 
Other frequency bands and stages showed marked developmental 

changes in relative power with qualitatively distinct stage- and topo
graphically specific developmental trajectories (Fig. 3). Considering 
NCH only, delta power decreased with age during R across all channels 
(all p < 10-15, max effect size at F4 r = -0.67), but increased with age in 
frontal channels, during N2/N3, with a peak around the age of puberty. 
In occipital channels, delta power decreased with age across all stages 
(all p < 10-15, with r ranging from r = -0.4 to 0.66). In contrast, theta 
power increased with age during R (all p < 10-10, max effect size at C4 r 
= -0.23) but decreased with age during N2/N3 (all p < 10-15, max effect 
size at F3 r = -0.63 during N2) in frontal and central channels. For the 

Fig. 2. Developmental changes in sleep EEG absolute spectral power. Developmental trajectories with 95 % confidence intervals of the mean, produced by averaging 
sleep estimates across individuals within 3-year nonoverlapping windows from 2.5 to 17.5 years in NCH databank and 2-year nonoverlapping windows from 4.5 to 
10 years in CHAT) for absolute power across sleep stages (N2, N3, R, rows), bands (columns) and channels. 

Fig. 3. Developmental changes in sleep EEG relative spectral power. Developmental trajectories with 95 % confidence intervals of the mean, produced by averaging 
sleep estimates across individuals within 3-year nonoverlapping windows from 2.5 to 17.5 years in NCH databank and 2-year nonoverlapping windows from 4.5 to 
10 years in CHAT) for relative across sleep stages (N2, N3, R, rows), bands (columns) and channels. 
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comparable age range, we observed broadly consistent patterns of 
NREM age-related change in CHAT. Finally, during REM, relative alpha, 
sigma and beta power increased with age (all p < 10-15, effect sizes 
ranging from r = 0.6 to 0.76 in NCH and all p < 10-10, effect sizes ranging 
from r = 0.21 to 0.35 in CHAT). 

2.3. Spindles, slow oscillations and their coupling 

Across childhood and adolescence, we observed multiple changes in 

NREM sleep spindles (Fig. 4). Although the density (count per minute) of 
both slow and fast spindles (SS and FS respectively, targeting 11 Hz and 
15 Hz activity, with approximately +/-2 Hz around each central fre
quency) increased with age in frontal channels (all p < 10-15, from r =
0.21 to 0.45 in NCH and p < 10-14, from r = 0.22 to 0.26 in CHAT), their 
developmental trajectories were distinct (Fig. 4). Whereas FS density 
linearly increased across all channels (all p < 10-15 in NCH and p < 10-10 

in CHAT) from 0.9 spindles per minute at age of 4 to 1.9 at age of 16 at 
C3, SS density displayed an inverted-U profile, most pronounced in 

Fig. 4. Developmental trajectories of spindles, slow oscillation, and their coupling. Developmental curves with 95 % confidence intervals generated by averaging 
sleep estimates within 3-year nonoverlapping windows from 2.5 to 17.5 years in NCH databank and 2-year nonoverlapping windows from 4.5 to 10 years in CHAT) 
for slow (top row) and fast (second row) spindle characteristics, SO parameters (third row) and coupling between SS/FS and SO (bottom row) during N2 across 
all channels. 
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frontal channels and peaking around 10 years with 2.4 spindles per 
minute at F3 (compared to 1.5 and 1.9 spindles at 4 and 16 years of age, 
respectively). 

Spindle morphology, not rate of occurrence, showed the most 
marked age-related changes, however. In particular, intra-spindle 
deceleration (sometimes called “chirp”, a typical characteristic of both 
fast and slow spindles) grew more pronounced with age, especially for 
SS (Fig. 4, p across all channels < 10-15 in NCH and p < 10-7 in CHAT, 
with strongest effects at F3: r = -0.66 and r = -0.38 in NCH and CHAT 
respectively (Sup. Fig. 2 C) as opposed to largest effect in FS density r =
0.53 and r = 0.29 in NCH and CHAT). 

Average spindle frequency varied markedly with increasing age, but 
differently for slow and fast spindles (Fig. 4): whereas SS frequency 
became faster with age (across all channels p < 10-15, max effect size at 
F3 r = 0.5 in NCH and p < 10-10, max effect size at F4 r = 0.3 in CHAT), 
FS frequency slowed down (all p < 10-15, max effect size at F4 r = -0.5 in 
NCH and p < 10-8, max effect size at F4 r = -0.29 in CHAT). Opposing 
directions of change in frequency of SS and FS was also observed in older 
adults (Djonlagic et al., 2020). Notably, both SS and FS developmental 
trajectories were highly non-linear with SS maximum and FS minimum 
frequency observed around 13 years of age. 

Note, that the total number of detected spindles (especially FS in 
occipital channels) was relatively low at younger ages somewhat 
limiting estimation robustness of their morphology characteristics. 
Nevertheless, they still displayed very consistent age-related trends and 
channel-specific patterns in both datasets. 

We detected slow oscillations (SOs) during N2 sleep by identifying 
zero-crossings in 0.5–4 Hz bandpass-filtered signals and applying fixed- 
duration but relative-amplitude thresholds (see Methods for details). As 
for spindles, SO density increased with age (Fig. 4) across all channels in 
both cohorts (all p < 10-15 in NCH and p < 10-15 in CHAT). The steepest 
increase observed was at F4 with 10 SOs per minute at age of 4 and 15 at 
16 years of age (r = 0.7 in NCH and r = 0.38 in CHAT, Sup. Fig. 2D). 

With respect to SO morphology, average negative peak amplitude, 
peak-to-peak amplitude, and the slope between negative and positive 
peaks decreased linearly across all channels (p < 10-15 in NCH and p <
10-5 in CHAT, with the largest effect for peak-to-peak amplitude at O1, r 
= -0.74 in NCH and r = -0.23 in CHAT, Sup. Fig. 2F). SO duration was 
the only parameter to express a marked non-linear trajectory, with a 
steep increase from 4 to 10 years and a steady decline after age 10–12 
years (Fig. 4). 

With respect to inter-cohort differences, SO duration estimates (as 
well as relative power in slow frequency band across all stages) 
expressed some of the largest absolute differences between the NCH and 
CHAT cohort. That could potentially be due to distinct technical char
acteristics of PSG recording devises (e.g. inherent filtering setting). 
However, it is noteworthy that the age-related trends remained consis
tent across both cohorts. 

SO properties are necessarily dependent upon the criteria used to 
detect them. In our primary analyses, based on optimizing the strength 
of observed spindle/SO coupling, we elected to use a relative amplitude 
threshold (see Methods for details). For example, 63 % of individuals 
had significant FS/SO overlap at C3 in NCH (66 % in CHAT) versus 58 % 
and 56 % when an absolute SO amplitude threshold was used. The 
choice of SO detection criteria can impact patterns of age-related 
change, however. Indeed, using an absolute threshold, age-related 
trends for SO rate, slope and amplitude were reversed – the former 
decreased with age while the latter two increased (Sup. Fig. 3). This 
apparent contradiction reflects a general decrease in SO activity with 
age, which is congruent with the observed age-related decrease in slow 
and delta band power. Reduced SO activity consequently lowers any 
relative threshold, which can in turn lead to relatively more events being 
detected. The optimal choice of threshold is an empirical question that 
will depend on the subsequent analyses, which underscores the impor
tance of always explicitly reporting the type of detection thresholds 
used. 

Returning to the original relative-threshold set of SO, we assessed 
spindle/SO coupling in three ways: 1) the tendency for spindles to 
preferentially occur non-uniformly with respect to SO phase (coupling 
magnitude), 2) the preferred SO phase at spindle peaks (coupling angle), 
and 3) the extent of any above-chance overlap between spindle and SO 
events, ignoring SO phase (coupling overlap). In general, SS showed 
more marked age-related changes, compared to FS (Fig. 4). SS coupling 
increased in frontal and central channels in both cohorts (all p < 10-15 in 
NCH and p < 10-1 in CHAT: e.g. at F3 r = 0.56 in NCH and r = 0.44 in 
CHAT, Supp. Fig. 2E). 

With respect to FS coupling, an age-related increase was observed 
only in the NCH sample (across all channels p < 10-15), primarily driven 
by a steep increase in adolescence (Fig. 4). The lack of CHAT replication 
here likely reflects the restricted age range: indeed, among NCH in
dividuals 10 or under associations were greatly attenuated, compared to 
the same tests in the older NCH subsample (data not shown). 

Next, we found that individual’s preferential SO phase angle at 
spindle peak (circular mean) shifted across development. In both co
horts, FS tended to occur before the SO positive peak, whereas SS tended 
to occur after it. However, with increasing age, both SS and FS shifted 
closer to the SO positive peak. Again, the most rapid change in preferred 
FS SO phase was during adolescence. 

Finally, rates of above-chance gross overlap between SS and SOs 
increased with age at frontal channels (F3/F4 p < 10-15, max r = 0.3 in 
NCH and p < 0.05, max r = 0.1 in CHAT) whereas FS overlap showed a 
modest (albeit significant) decrease at central channels (C3/C4 p < 0.01, 
max r = 0.17 in NCH and p < 0.05, max r = 0.13 in CHAT). Unlike other 
SO metrics, age-related changes in coupling were generally similar 
despite different approaches for SO detection (Sup. Fig. 3). 

Given that the majority of individuals in both cohorts had sleep 
apnea and/or snoring, we additionally retested all sleep variables for 
association with age after including apnea-hypopnea index (AHI) as a 
covariate. Results remained effectively identical, with a Pearson’s cor
relation r > 0.99 between signed log-transformed p-values in original 
and AHI-controlled analyses, also with comparable levels of signifi
cance. Same results were obtained using arousal index instead of AHI. 

2.4. Brain age prediction using sleep macro- and micro-architecture 
measures 

Above, we demonstrated 1) that age was strongly associated with 
multiple sleep macro- and micro-architecture metrics, and 2) that 
findings were congruent for two samples from distinct (clinical versus 
research) sources. We next aimed to condense these multivariate 
developmental patterns into a single model to estimate chronological 
age from the sleep EEG, and then to test whether its deviation from 
observed age - i.e. brain age gap - could identify pathological neuro
development. As our starting point, we fit a simple linear regression of 
age on sleep macro- and micro-architecture metrics adjusting for sex and 
race, using 70 % of the non-NDD NCH sample (i.e. after first excluding 
all clinical subgroups). We estimated performance using 10-fold cross- 
validation (Fig. 4 A). An initial model including 258 sleep variables 
(see Supp. table 7 for the detailed list) and two covariates (sex and race) 
achieved R2 = 0.89 (0.03 SD) and mean absolute error (MAE) of 1.08 
years (0.11 SD). Whereas models trained on micro-architectural features 
only (151 spectral power, or 95 sleep spindle, SO and coupling metrics) 
performed almost as well as the full model, a model including only 
macro-architecture metrics displayed much lower performance (Fig. 4 
B). 

To validate and test model transferability, we applied the full NCH- 
derived model to three held-out validation sets, none of which included 
any NDD individuals (Fig. 4 A): i.) the remaining 30 % of the non-NDD 
NCH sample, ii.) the CHAT sample, which was used as the replication 
dataset in the previous sections and iii.) a new pediatric dataset PATS 
(Pediatric Adenotonsillectomy Trial for Snoring, PATS: N = 627 [307 
females]. The PATS dataset, similarly to CHAT, comprised children with 
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snoring from diverse ethnic backgrounds participating in a clinical trial. 
Compared to CHAT, PATS had a wider age range that was closer to 
NCH’s (mean age 6.3 years, range 3 to 13 years). 

In all three test samples, the model predicted age with relatively high 
accuracy, indicating a high degree of transferability (Fig. 5C). The 
highest performance was observed in the NCH testing set, where pre
dicted and observed age correlated r = 0.93. Although the correlations 
were lower in CHAT and PATS (r = 0.56 and r = 0.85 respectively), this 
likely was in part due to the narrower age ranges; the MAEs were 
comparable to NCH (1.11–––1.31 years). Prediction accuracy was 
similar for boys and girls in all three testing samples (p > 0.05), whether 
or not participant sex was not included in the model. Nonetheless there 
were still significant (albeit relatively subtle) sex differences and sex-by- 
age interactions in multiple measures of sleep macro and micro
architecture consistent with the previous literature (Baker et al., 2020; 
Campbell et al., 2012) (Sup. Fig. 4). Finally, the brain age gap (either 
MAE or ME) was also not significantly associated (p > 0.05) with AHI in 
either NCH or CHAT. 

Despite significant linear associations across the majority of the sleep 
features, many of them displayed non-linear developmental trajectories. 
This prompted us to test whether our age prediction would improve 
using a non-linear approach. The results, however, were nearly identical 
when LightGBM – a tree-based learning algorithm – was employed using 
the same set of sleep EEG features (e.g. linear regression model vs 
LightGBM in the held-out PATS sample – r = 0.85 vs 0.85, MAE = 1.18 vs 
1.1 years, ME = 0.48 vs 0.6 years). 

2.5. Brain age prediction and NDD 

Brain age gap was significantly negative (i.e. younger than expected) 
in individuals with DS (ME = -2.1 years, p = 9 × 10-9) or intellectual 
disability (ME = -0.77 years, p = 0.02) subgroups (Fig. 5 D). Interest
ingly, for DS the brain age gap effect was exacerbated with increasing 
age, suggesting greater developmental delays in older patients (Fig. 6 E). 
Given prior reports of accelerated ageing (i.e. positive age gaps) in DS 
adults based on structural MRI and epigenetic markers (Cole et al., 2017; 
Horvath et al., 2015), we sought to contextualize our finding of delayed 
development in DS, especially given that the non-NDD NCH training 
sample was obligatorily limited to children and adolescents, combined 
with the fact that some sleep EEG metrics follow nonlinear, inverted-U 
trajectories across the lifespan (e.g. fast spindle density increases 
across childhood, peaks around 20 years of age and slowly declines 
thereafter, Fig. 6B). 

We therefore estimated the developmental trajectories of sleep EEG 
metrics in a new dataset spanning both childhood and adulthood: PATS 
augmented by the Cleveland Family Study (N = 730, 401 females, mean 
age of 41 spanning 6.8 to 89 years) (Fig. 6A). Given the nonlinear, 
inverted-U lifecourse trajectories of spindle density, one can identify 
groups of older adults with numerically equivalent mean spindle den
sities compared to young children, as well as compared to the DS group 
(e.g. average FS density at 3 and 76 years was 0.85 and 0.78n/min 
respectively compared to 0.63 in DS group, Fig. 6B), which could be 
interpreted as (extreme) accelerated ageing in DS. 

However, looking across other sleep metrics, the childhood DS group 
did not resemble individuals of older age, but was instead close to 

Fig. 5. Brain age prediction based on sleep micro- and macro-architecture in non-NDD and NDD samples. A – a schematic illustration of the samples and steps used to 
predict individual chronological age based on sleep features. B – model performance based on different domains of sleep features using 10-fold cross validation. 
Metrics plotted are the explained variance and mean absolute error (the error bars represent SD across folds). C – The scatterplots show predicted vs true chro
nological age for all held-out datasets with mean absolute error (MAE), mean error (ME) and Pearson’s correlation (r) between chronological and predicted age 
reported for each sample. D – Bar plots illustrate MAE and ME for each NDD subgroup in comparison to the non-NDD held-out sample. We estimated variability of 
these estimates by repeating the analysis 100 times where NCH non-NDD training and non-NDD held-out set were resampled each round, but the disorder subgroups 
remained unchanged. The resulting 100 estimates of MAE and ME were averaged and illustrated in bar plots (error bars are min and max values across 100 rounds). 
Stars indicate statistical difference between estimates in each clinical subgroup vs testing set (* - p < 0.05, ** - p < 0.01, *** - p < 0.0 01). 
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profiles seen in younger children. This held both for individual metrics 
such as absolute theta power (Fig. 6C) as well as for similarity across a 
composite of sleep metrics (Fig. 6D). That is, considering the broad 
profile of all age-dependent sleep metrics, the DS group (mean age of 8 
years) was more similar to the average for children aged 6 years (i.e. 
consistent with a delay) rather than any older adolescent or adult group. 

In absolute terms, the brain age gap was significantly larger across all 
NDD subgroups compared to the non-NDD NCH sample: DS (MAE =
2.48 years, p = 4 × 10-7), intellectual disability (MAE = 2.06 years, p =
3 × 10-5), CP (MAE = 1.6 years, p = 0.011), epilepsy (MAE = 1.57 years, 
p = 0.003), ASD (MAE = 1.46 years, p = 0.02) and ADHD (MAE = 1.3 
years, p = 0.02) groups, consistent with greater levels of heterogeneity 
among NDD groups. 

To gain some insight into which sleep alterations were driving these 
brain age discrepancies in NDD, we performed a series of exploratory 
analyses within NCH, comparing each NDD subgroup with the non-NDD 
sample, statistically controlling for i) the other, potentially overlapping 
NDD subgroups, ii) diagnoses of major sleep disorders, iii) contempo
raneous use of medications likely to impact sleep, iv) age, v) sex, vi) race 
and vii) AHI (see Methods for details). The results for all NDD groups are 
provided in Supp. Tables 3–6. 

Individuals with DS – the subgroup with the largest mean discrep
ancy between predicted and chronological age – showed the highest 
number of significant group differences and age-by-group interactions 
(Sup. Fig. 5). The largest effect sizes were for spindle characteristics – 
lower SS spindle density (1.1n/min in DS vs 1.9 in the non-NDD sample 
at F4, p < 10-15), duration (at F3 bst = -1.1, p < 10-15), less pronounced 
chirp (at C3 bst = 0.86, p < 10-15) and absolute beta power (at F3 during 
N2 bst = 0.94, p < 10-15, Supp. Tables 3–5). In terms of age-related 
trajectories, coupling between SO and spindle metrics were among 
those showing stronger age-by-group interactions. For example, 
coupling overlap between SO and SS at F3 significantly decreased with 

age in DS (Fig. 6F, r = -0.28, p = 0.02) but increased in the non-NDD 
sample (r = 0.17, p < 10-10). 

Despite significant deviations in both MAE and ME, the number of 
altered sleep estimates were much lower in the intellectual disability 
group compared to the DS group; these were largely related to spindle 
frequency characteristics (Supp Fig. 5). SS density was associated with 
the degree of intellectual disability (the largest effect at C3 r = -0.39, p =
0.0009, Fig. 6G) and was in general decreased compared to individuals 
without NDD in frontal channels (the largest effect at F3 bst = -0.29, p =
0.003, Supp. Tables 5, Fig. 5H). 

Finally, multiple nominally significant group and age-by-group al
terations were detected for ADHD, CP and Epilepsy (Supp. Fig. 5, Sup. 
Table 3–6 contain full reports of uncorrected results). Except for ASD, all 
NDD-subgroups had common significant (p < 0.05) deficit of stage R 
sleep expressed as reduced duration (in DS), proportion (in intellectual 
disabilities) or both (in CP and epilepsy) and stage R latency (in ADHD) 
even after adjusting for sleep disorders and relevant medication. 

3. Discussion 

Using both clinical and research datasets, we identified consistent 
patterns of age-related change during childhood and adolescence, for 
multiple facets of sleep macro- and micro-architecture. We further 
showed that, when combined, the different sleep EEG metrics we 
examined could reliably predict an individual’s age in pediatric pop
ulations, and that the resulting models were broadly transferable across 
different cohorts. Finally, we showed that some NDD subgroups (pri
marily DS) exhibited systematic differences in their predictions of age, 
reflecting multiple disruptions of sleep architecture. 

Fig. 6. Examples of NDD effects on sleep micro-architecture. A – age distribution in the combined PATS and CFS dataset; B, C – fast spindle density and absolute theta 
power averaged across age bins (lines indicate 95 % CI) in the combined sample, in reference to the mean fast spindle density and absolute theta power in individuals 
with DS (green horizontal line, dashed vertical line illustrates mean age in DS subgroup); D – normalized mean absolute difference between DS group and each age 
bin in the combined sample across sleep macro- and microarchitecture estimates (in green; grey points indicate the same but for non-NDD sample). Vertical lines 
illustrate average age of DS and non-NDD groups. E – scatterplot illustrates changes in brain age gap with age in DS subgroup (in green) and the test sample. F – 
distinct developmental trajectory of SS coupling overlap at C3 in DS subgroup (in green) compared to the rest of non-NDD sample; G – correlation between SS density 
at C3 and degree of intellectual disability (grey dashed line illustrates the mean SS density at C3 for the non-NDD sample); H – SS density across subgroups and the 
rest of the sample at F3 (** - p < 0.01, *** - p < 0.001). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

N. Kozhemiako et al.                                                                                                                                                                                                                           



NeuroImage: Clinical 41 (2024) 103552

9

3.1. Macro-architecture changes with age 

Confirming numerous previous reports of decreasing total sleep time 
during the first two decades of life (Galland et al., 2012; Iglowstein et al., 
2003; Ohayon et al., 2004), we additionally showed significant changes 
in other sleep macro-architecture metrics. Congruently with a large 
cross-sectional study of children without sleep complaints (Scholle et al., 
2011), we found an increase in sleep cycle duration, stage R latency and 
a decrease in a number of sleep cycles with age. With respect to sleep 
efficiency, for which both age-related increases (Baker et al., 2012; 
Scholle et al., 2011) as well as decreases (Baker et al., 2016) have been 
reported, our findings pointed to a significant decline in both cohorts. 

Major developmental changes were also observed with respect to 
sleep stage composition. Prior reports of developmental trajectories of 
NREM sleep showed consistent findings of an increase in N2 and a 
reduction in N3 with age (Baker et al., 2016; Jenni & Carskadon, 2004; 
Ohayon et al., 2004; Scholle et al., 2011; Tarokh et al., 2011; Tarokh & 
Carskadon, 2010), as found in our analyses. In contrast, the reports 
diverge for stage R sleep showing either an increase (Baker et al., 2016; 
Feinberg et al., 2012; Ohayon et al., 2004), no change (Tarokh et al., 
2011; Tarokh & Carskadon, 2010), or a decrease (Scholle et al., 2011) in 
stage R percentage and/or duration. Our analysis – which represents the 
largest study to date – supports a decrease in R sleep across ages 2.5 to 
17.5 years. 

Despite statistically consistent associations with age, the age- 
adjusted absolute values of many macro-architectural metrics varied 
greatly between NCH and CHAT, a pattern observed in other contexts (e. 
g. comparing stage duration statistics between two elderly PSG cohorts, 
Djonlagic et al., 2021). Although such cohort effects may primarily 
reflect different recording contexts or other technical factors, rather 
than physiological differences between these populations, inasmuch as 
macro-architectural measures are susceptible to cohort-specific mea
surement biases, these issues may present challenges for the trans
ferability of predictive models based on macro-architectural metrics. 

3.2. EEG spectral composition changes with age 

Multiple studies have reported age-related changes in absolute delta 
power during NREM sleep, suggesting an inverted-U trajectory: an in
crease from childhood to adolescence (Feinberg et al., 2012) and 
reduction from adolescence to adulthood (Baker et al., 2012, 2016; 
Feinberg & Campbell, 2013; Jenni & Carskadon, 2004; Tarokh & Car
skadon, 2010). During R sleep, a linear decrease in delta power has also 
been documented (Feinberg & Campbell, 2013). Theta power has also 
been reported to decline with age across all sleep stages (Feinberg & 
Campbell, 2013; Gaudreau et al., 2001). 

Despite limited number of channels, we confirmed topographical 
patterns in anterior-posterior direction of relative delta power change 
across a large and diverse sample. In a sample of 55 individuals 
(2.4–19.4 years), the scalp location with maximal SWA (1–4.5 Hz) 
power shifted with age in a posterior-to-anterior direction (Kurth, 
Ringli, et al., 2010), mirroring the pattern of cortical thinning during 
childhood and adolescence(Shaw et al., 2008). Several studies utilizing 
both MRI and sleep EEG reported a link between slow-wave activity 
during NREM sleep and cortical thickness and/or gray matter volume 
(Buchmann et al., 2011; Goldstone et al., 2018). In general, the devel
opmental decline in total power, as well as in delta and theta frequency 
bands, is not specific to sleep but also widely reported in wake (Barriga- 
Paulino et al., 2011; Boord et al., 2007; Gasser et al., 1988; Whitford 
et al., 2006), and has been similarly linked to reduction in cortical gray 
matter volume, and cerebral metabolic rate (Boord et al., 2007; Whit
ford et al., 2006). Thus, similar developmental changes in EEG spectral 
composition during both wake and sleep might reflect global structural 
changes in the brain, such as synaptic pruning that underlies normal 
cortical maturation and are not state-specific (Segalowitz et al., 2010). 

In contrast to the general decline in total power, absolute sigma 

power increased with age. A similar increase was previously reported 
from 10 to 12 years in a longitudinal sample (Tarokh & Carskadon, 
2010) but there are also reports of higher absolute sigma in children 
compared to adults (Gaudreau et al., 2001). Another longitudinal sam
ple reported a complex trajectory of sigma power where it increased 
linearly from 6 to 12 years of age and then decreased from 12 to 16 
(Feinberg & Campbell, 2013; Kurth, Ringli, et al., 2010), matching our 
observations of inverted-U trajectories in spindle activity. 

When normalized by total power, sigma power displayed one of the 
strongest age-related effects. During NREM sleep, this increase can be 
attributed to spindle maturation (discussed below). During R sleep, 
relative sigma power age-related increases were also accompanied by 
increases in relative alpha and beta power. While sleep studies reporting 
age-related changes in relative power are scarce, similar findings of an 
overall increase in higher frequencies are well reported during wake 
(Dustman et al., 1999; Gasser et al., 1988; Soroko et al., 2014), once 
again pointing to brain maturation processes evident across both sleep 
and wake. 

Although, to our knowledge, there are no prior studies explicitly 
reporting age-related changes in relative power across classical fre
quency bands in sleep, our results indicate that relative power is a good 
metric to highlight topographical-, stage- and frequency-dependent as
pects of developmental changes in the sleep EEG. For example, we 
observed distinct and sometimes contrasting trajectories between oc
cipital and anterior channels as well as between NREM and R sleep 
stages (e.g. in delta and theta frequency bands), that can be practically 
leveraged when developing multi-channel tools for automatic stage 
classification in children and adolescents. 

3.3. NREM microarchitecture 

Rapid increases in spindle density during childhood have been linked 
to maturation of thalamocortical circuits (Fernandez & Lüthi, 2020). 
Our results tend to confirm previous reports of slow spindle density 
increasing during childhood and reaching its peak around puberty 
(Purcell et al., 2017; Scholle et al., 2007). SS duration also was shown to 
exhibit a similar developmental pattern, peaking slightly earlier than 
density, confirming previous reports (Scholle et al., 2007). In contrast, 
FS density increased through adolescence, congruent with recent studies 
(Goldstone et al., 2019; Purcell et al., 2017). 

One of the most frequently reported findings is that the spindle fre
quency peak estimated from examination of the power spectrum in
creases with age (Campbell & Feinberg, 2016; Hahn et al., 2020; Tarokh 
et al., 2011). Although one early study showed that this is true for both 
frontal and centro-parietal spindles (Shinomiya et al., 1999), tracking 
the spindle frequency based on the sigma peak for both slow and fast 
spindle can be problematic given that the sigma peak in children falls 
within a range of slow spindles (Hoedlmoser et al., 2014). Alternatively, 
sigma peak increase could potentially reflect a shift in the ratio of slow 
versus fast spindle density with fast spindles becoming more prevalent 
after puberty. Our findings were based on spindle detection as discrete 
events, an approach that allowed us to estimate change in frequency for 
both slow and fast spindles in a more direct way. We showed that while 
SS frequency increases with age congruently with previous reports based 
on the sigma power peak, the FS frequency decreases. Interestingly, such 
a pattern appears to be opposite of the aging effect in aging adults (50 s 
to 80 s) where the SS and FS frequencies tend to diverge with SS 
becoming slower and FS faster (Djonlagic et al., 2020). A recent study 
that investigated spindles in three groups of adolescents found that both 
slow and fast spindles frequency was increased with age (Bocskai et al., 
2022). However, in that study, slow and fast spindles were distinguished 
only using topographical differences (all spindles detected in frontal 
channels were declared slow and all spindles in centro-parietal channels 
fast). 

We also report a previously undocumented finding for intra-spindle 
frequency change (or spindle “chirp”). This metric is usually negative, 
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reflecting the characteristic deceleration of both SS and FS (Andrillon 
et al., 2011). Previous literature has suggested that chirp might be linked 
to spindle termination mechanisms and cortical modulation (Carvalho 
et al., 2014). We found that intra-spindle deceleration intensifies over 
childhood and adolescence, showing some of the most pronounced age- 
related changes in our study. 

SOs also displayed some of the strongest changes within our cohort. 
SO rate per minute increased dramatically from childhood to adoles
cence while SO amplitude and slope decreased. Age-related decreases in 
SO amplitude and slope were reported previously in a small (N = 14) 
sample (Kurth, Jenni, et al., 2010). We also reported, however, that the 
interpretation of age-related trends is obligatorily highly dependent on 
the choice of the SO amplitude detection threshold. Prior work showed 
that coupling between SOs and spindles also increased from childhood 
to adolescence in longitudinal sample of 33 individuals (Hahn et al., 
2020); this result was confirmed in our sample and extended to show 
that the strongest changes are for SS coupling magnitude. 

3.4. Estimating brain age from the sleep EEG 

We showed that individual differences in sleep macro- and micro- 
architecture can be summarized using simple methods to generate a 
highly accurate predictor of chronological age that is transferable across 
multiple independent samples. As has been widely employed by many 
groups using different brain imaging modalities (as well as epigenetics 
and other biomarkers), the difference between predicted “biological” 
age and observed chronological age can be interpreted as a measure of 
development and health (Franke & Gaser, 2019). In pediatric pop
ulations, studies using structural MRI (Franke et al., 2012; Hong et al., 
2020) have been able to predict age with high accuracy (r > 0.9). Age 
has also been predicted using functional MRI (Li et al., 2018; Lund et al., 
2022; Qin et al., 2015), albeit with lower accuracy (r = 0.54–––0.73). 
While a few studies using sleep EEG in adult cohorts achieve good results 
– r = 0.82–0.93 (Nygate et al., 2021; Sun et al., 2019), to our knowledge 
this is the first study to demonstrate this in a pediatric cohort. 

One recent report used resting state wake EEG spectral power to 
estimate brain age in a cohort of 5–18 year-olds, with an average MAE of 
1.2 years (Vandenbosch et al., 2019). This MAE is broadly similar to our 
results (MAE 1.1–1.3 years), although we note that are our results are 
based on performance in two independent samples, not only by means of 
cross-validation within the same sample, as in (Vandenbosch et al., 
2019). Given that many spectral age-related changes were evident in 
wake as well as sleep, we might expect similar performance for age 
prediction using either wake or sleep EEG. However, it remains an open 
and empirical question as to how highly correlated brain age estimates 
are when based on different modalities (MRI versus EEG) or different 
physiological states (wake versus sleep). Note that better prediction of 
chronological age is not, in itself, necessarily the most relevant factor: as 
a trivial conceptual example, a model that achieved perfect prediction (r 
= 1, MAE = 0) would be useless. Furthermore, even if two approaches 
have identical performance with respect to prediction of chronological 
age per se, they may still yield very different results with respect to how 
the model residuals (i.e. the so-called brain age gap) relate to brain 
development and health. 

To address the question of the biologically or clinically relevant 
properties of the brain age gap, we estimated it in NDD subgroups as 
well as non-NDD children. The largest deviations in both absolute and 
signed values (MAE and ME) were seen in individuals with DS and in
tellectual disability, with both groups showing negative gaps, consistent 
with delayed brain development. While we are not aware of other 
studies reporting on brain age in children with DS, a similar analysis was 
conducted for 46 adults (age range 28–––65 years) with DS using 
structural MRI. In contrast to our results, they reported a positive brain 
age gap interpreted as accelerated aging (Cole et al., 2017), finding that 
it was related to increased beta amyloid deposition and cognitive 
decline. With the use of DNA methylation levels to calculate an 

‘epigenetic clock,’ Horvath and colleagues also pointed to accelerating 
biological aging in brain and blood tissue (Horvath et al., 2015), with 
evidence that such advanced ageing of blood samples begins prenatally 
(Xu et al., 2022). Likewise, as well as shorter life expectancies generally, 
adults with DS display older biological age based on multiple physio
logical measures (e.g. BMI, blood pressure, etc) (Nakamura & Tanaka, 
1998). When cognitive and behavioral levels were assessed, however, 
individuals with DS tend to have lower developmental age (Gameren- 
Oosterom et al., 2011), similar to our findings of children with DS being 
the most similar to younger age children with respect to their sleep 
macro and microarchitecture. Such results support the notion that 
accelerated/decelerated aging patterns are not universal and can be 
tissue and system-specific (Horvath et al., 2015), as well as that brain 
age based on the sleep EEG may be reflective of cognitive and behavioral 
development. 

Additional analyses controlling for chronological age revealed al
terations in multiple sleep macro and micro-architecture metrics in the 
DS subgroup, many of which were the opposite of typical age-related 
changes, suggesting altered developmental patterns in DS. For 
example, we saw a global increase in absolute spectral power in DS 
versus an age-related decrease in the control groups. Likewise, in
dividuals with DS had reduced SS, FS and SO density across ages 4 to 16, 
counter to the marked age-related increases in these metrics in this age 
range. With the exception of one report of increased higher total spectral 
power (Sibarani et al., 2022), the results of which we confirm here, a 
fuller assessment of sleep microarchitecture in DS has not been con
ducted and so our findings provide an important developmental 
perspective on abnormalities associated with DS. 

We also observed a consistently younger functional pattern in the 
sleeping brain in individuals with intellectual disabilities. In terms of 
sleep microarchitecture, spindle frequency metrics expressed the most 
marked alterations. While it is hard to compare our findings to the 
existing literature due to scarcity of reports available, two reports 
concluded that children with intellectual disabilities – especially those 
with more severe impairments – had decreased spindle density based on 
visual detection (Shibagaki et al., 1980; Shibagaki & Kiyono, 1983). Our 
findings also pointed to reduction in SS density in ID, that was more 
profound with the higher degree of intellectual disability. 

While other NDD subgroups – ASD, ADHD, CP and epilepsy – did not 
express consistent shifts towards either younger or older brain (ME), 
they all expressed larger brain age gaps in absolute terms (MAE). This 
may indicate considerable heterogeneity within these disorders: indeed, 
this has been previously reported in other contexts for ASD and ADHD 
(Dajani et al., 2016; Jeste et al., 2015) as well as CP (Rosello et al., 2021) 
and epilepsy (Pack, 2019). Alternatively, these results could reflect 
group-level differences in the sleep EEG leading to increased noise in the 
age prediction model, as NDD groups were excluded from the primary 
NCH model fitting. In general, future studies will be needed to fully 
evaluate the relative merits of different brain age metrics, and to 
determine whether ones based on the sleep EEG offer additional, unique 
information or not, as well as how brain age alterations may vary over 
the course of a disease. One important data-point to guide the devel
opment of possible clinical applications would be to determine how 
state-dependent (versus trait-like) these measures are: for example, 
considering children before versus after the onset of behavioral and 
cognitive symptoms, or in response to medication, or as a function of 
duration of illness. 

Except ASD, all subgroups displayed alterations in stage R sleep, 
either in terms of absolute duration, relative duration or stage R latency. 
This is consistent with previous reports of stage R deficits in DS (Spanò 
et al., 2018), CP (Hayashi et al., 1990), epilepsy (Sadak et al., 2022), and 
intellectual disability (Esposito & Carotenuto, 2014), supporting the 
notion that R deficits are common characteristics across NDDs. Previous 
studies reported that lower R duration was associated with worse 
cognitive performance and mortality in older individuals (Djonlagic 
et al., 2020; Leary et al., 2020). As such, R sleep metrics may not be good 
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candidates for condition-specific biomarkers, but rather reflect patho
physiological alterations shared between distinct disorders. 

3.5. Caveats & conclusions 

In summary, the present study provides a comprehensive assessment 
of age-related changes in sleep macro and microarchitecture, based on a 
large sample from multiple cohorts spanning the first two decades of life. 
Nonetheless, certain constraints should be mentioned. One obvious 
limitation is that the NCH data are from a database of clinical encoun
ters. Based on comparison to CHAT, all primary age-related changes 
appeared qualitatively (and often quantitatively) conserved across 
studies, suggesting that these robust effects reflect fundamental devel
opmental processes that may transcend diagnostic status. The subjects in 
CHAT either qualified for a diagnosis of obstructive sleep apnea, or 
snored and on that basis had some form of sleep-disordered breathing, 
meaning that the subjects though not necessarily referred to a sleep 
disorders center still most likely did not have normal sleep. Therefore, 
our comparisons may be limited due to lack of truly normative controls. 
Nonetheless, the presence of sleep-disordered breathing or other sleep 
disorders in many of the subjects who contributed data for the present 
analyses does not invalidate the high likelihood that sleep in these in
dividuals still reflected many aspects of normal sleep development 
across childhood and adolescence. For example, we did not find evi
dence of significant effects of AHI on the age-related changes of sleep 
metrics or brain age prediction. Another limitation is the absence of 
detailed cognitive and behavioral data in the NDD cohort, precluding 
more direct investigations of how age-related changes in sleep track 
with development and any subclinical traits. Similarly, puberty status 
was not available, limiting our ability to interpret developmental dif
ferences not captured by age. Due to the absence of resting state data, we 
also could not account for developmental shifts in the alpha peak that 
could have effect on power in neighboring frequency bands. We 
acknowledge that while we report robust age-related changes in NREM 
micro-architecture across multiple datasets as proof-of-principle, the 
performance of this algorithm could likely be further improved by 
optimizing details of the analytic approach. 

Our findings from retrospective clinical and clinical research data, 
meanwhile, appear to suggest very strong age-related changes across 
numerous sleep metrics in children ages 4 to 17 years, which could be 
robustly identified across independent samples despite the de
mographic, clinical and procedural/technical differences. As well as 
confirming previous reports based on smaller samples, we describe new 
metrics not previously studied from a developmental perspective, 
including stage- and channel-specific developmental trajectories of 
relative spectral power, intra-spindle frequency modulation, and tem
poral overlap between spindles and SOs. A model of multiple sleep 
metrics across different domains was able to predict chronological age 
with high precision in typically developing individuals, whereas this 
correspondence was lessened in individuals with NDDs, suggesting that 
these sleep metrics are sensitive to various functional abnormalities 
present in the (sleeping) brain. Taken together, our results indicated that 
sleep macro and microarchitecture offer important information about 
brain maturation which may facilitate a better understanding of the 
atypical neurodevelopment. 

4. Methods 

4.1. Participants 

We primarily used PSG data from two pediatric samples – the 
Nationwide Children’s Hospital Sleep DataBank (NCH) and the Child 
Adenotonsillectomy Trial (CHAT) – both available via the National 
Sleep Research Resource (http://sleepdata.org). The NCH sample was 
created to facilitate pediatric sleep research. It was composed of patients 
(from infants to some adults) who underwent clinical PSG from 2017 to 

2019 at the Nationwide Children’s Hospital (Lee et al., 2022), and 
contained diagnostic (ICD 9/10 codes) and medication data. All the data 
were de-identified prior to NSRR deposition, and received NCH Insti
tutional Review Board exemption with HIPAA waiver. 

The CHAT sample was derived from data collected from six US pe
diatric clinical centers as part of sleep screening procedures for a clinical 
trial of children aged 5 to 9 with snoring who were candidates for 
adenotonsillectomy. All participants were without severe chronic med
ical conditions or ADHD requiring medications (in total 12 participants 
had ADHD diagnosis), presented with snoring and were potential can
didates for adenotonsillectomy (Marcus et al., 2013; Weinstock et al., 
2014). All children (n = 1,244) were screened with a PSG (for detailed 
description of inclusion criteria for the data acquisition see Marcus et. 
al., 2013) and here we used the sample of all screened children 
excluding the follow-up recordings that were available for participants 
with mild to moderate obstructive apnea. Data collection for CHAT was 
approved by local Institutional Review Boards and written informed 
consent was obtained from each individual or their legal guardians. 

Primary exclusion criteria for the NCH sample were i) age younger 
than 2.5 years (due to potential differences in infant and toddler EEGs), 
ii) age above 17.5 years (due to sparsity of data, and iii) a narcolepsy 
diagnosis (n = 42). In CHAT, we removed individuals for whom age 
information was missing (N = 19). In both samples, if the same indi
vidual had multiple recordings available, we only used a single (the first) 
recording. 

For the brain age analyses only, to expand the age range of the 
validation set, we additionally included individuals (N = 1008) from the 
Pediatric Adenotonsillectomy Trial for Snoring (PATS) dataset 
comprised of children between 3 and 13 years with snoring but with an 
AHI < 3 (Wang et al., 2020). This allowed us to test the transferability of 
the model. 

Cleveland Family Study sample (N = 730, including individuals be
tween 6 and 88 years) was used for analysis testing the possibility of 
accelerated aging in the DS subgroup. 

4.2. Clinical information for NCH sample 

The DIAGNOSIS.csv file (available via NSRR) was used to delineate 
clinical sub-groups in the NCH sample. Following recommendations 
from the original description of the dataset (Lee et al., 2021), we only 
used final diagnosis codes (DX_ENC_TYPE & DX_SOURCE_TYPE columns 
equal to “Final Dx”). Since diagnostic codes provided for the sample 
were either according ICD9 or ICD10, we searched for specific diagnoses 
using the string search based on the diagnosis description (DX_NAME). 
For example, searching a string “[Aa]utis” and visually checking all 
unique matching diagnoses as well as the ICD codes. The information for 
all matching diagnoses for each condition is provided in the Supple
mentary table 1. 

To control for medication use, we used records available in the 
MEDICATION.csv file. Specifically, we identified participants whose 
PSG was performed between the prescribed medication start and end 
date. We identified four therapeutic classes of medication out of 42 that 
could potentially affect sleep: 1) antihistamines, 2) psychotherapeutic 
drugs, 3) CNS drugs, including anticonvulsants, 4) hormones, and 5) 
sedatives/hypnotics. We summarized them by therapeutic class and 
subclass (THERA_CLASS and THERA_SUBCLASS), pharmaceutical class 
(PHARMA_CLASS). 

4.3. EEG preprocessing 

All steps of sleep EEG data processing were performed using Luna 
(http://zzz.bwh.harvard.edu/luna/), an open-source package devel
oped by us (S.M.P). All NCH, CHAT and PATS PSGs contained six EEG 
channels (F3, F4, C3, C4, O1, O2). In CHAT, two temporal channels (T3, 
T4) were also available. The CFS cohort contained C3 and C4 EEG 
channels only. We first selected 30-seccond epochs of a particular stage 

N. Kozhemiako et al.                                                                                                                                                                                                                           

http://sleepdata.org/
http://zzz.bwh.harvard.edu/luna/


NeuroImage: Clinical 41 (2024) 103552

12

(N2, N3, REM) according to manual, AASM-based staging (in the CFS it 
was performed using only central channels) in all datasets. Since the 
original sampling rates varied between and within the datasets 
(256–512 Hz in NCH and 200–512 Hz in CHAT, 200 Hz in PATS and 128 
Hz in CFS), all EEG signals exceeding 200 Hz were datasets were down- 
sampled to 200 Hz and for CFS sample rate of 128 Hz was kept un
changed. In all datasets, EEG signals were referenced to contralateral 
mastoids (M1 or M2), converted to uV units and bandpass filtered be
tween 0.5 and 35 Hz (raw signals were exported without any additional 
filters being set). Due to excessive line noise interference observed in 
many NCH samples, we applied an approach to remove it based on 
spectrum interpolation (Leske & Dalal, 2019), as implemented in Luna. 

Next, within each stage, we identified all epochs with maximum 
amplitudes above 200 uV, or with flat or clipped signals for more than 
10 % of the epoch; further, epochs were marked as outliers if they were i) 
more than 3 SDs from the mean (for that individual) of all channels for 
any of the three Hjorth parameters, activity, mobility and complexity 
(Hjorth, 1970), ii) 4 SDs from the mean of other epochs of the same 
channel or iii) 4 SDs from the mean of all epochs across all channels. 
Hjorth-based epoch outlier removal was performed twice for each in
dividual. Channels and/or epochs were removed if more than 50 % of 
epochs were outliers. Such thresholds were selected empirically to 
remove gross artifacts from the signals but also to avoid removing too 
many epochs. The quality of the signals was inspected visually in several 
randomly selected EEG recordings and visualizing spectral power across 
frequency for all signals across all studies. The final averaged number of 
epochs per participant for the NCH dataset were –M(SD, range) – N2: 
370 (95, from 35 to 869), N3: 230 (74, from 24 to 654), R: 151 (58, from 
10 to 379); and for CHAT N2: 374 (89, from 96 to 686), N3: 282 (79, 
from 53 to 652), R: 165 (47, from 10 to 349). 

4.4. Spectral power estimation 

Spectral power was estimated using Welch’s method separately for 
N2, N3 and REM, summarized by classical frequency bands – slow 
(0.5–1 Hz), delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma 
(12–15 Hz), beta (15–30 Hz), and total power (0.5 to 35 Hz). Specif
ically, for each 30-seccond epoch, we applied the Fast Fourier Transform 
with 4 s segments (0.25 Hz spectral resolution) windowing with a Tukey 
(50 %) taper, with consecutive segments overlapping by 50 % (2 s). We 
then averaged power across all segments per epoch. Subsequently, 
epoch-wise power was averaged across all epochs for a particular 
channel and stage. Relative power was computed with respect to the 
total absolute power. Absolute power values were then log-transformed 
prior to analysis. 

4.5. Spindle detection 

Motivated by recent findings that two classes of spindles – slow 
frontal and fast central – emerge as early as 18 months after birth (Kwon 
et al., 2022), we detected both separately. Slow and fast spindles were 
detected using 7-cycle wavelets with center frequencies of 11 Hz and 15 
Hz (with approximately +/-2 Hz around each central frequency) 
respectively as previously described (Purcell et al., 2017; Warby et al., 
2014). Specifically, putative spindles were identified based on tempo
rally smoothed (window duration = 0.1 s) wavelet coefficients (from a 
complex Morlet wavelet transform) using following criteria. Intervals 
exceeding 1) 4.5 times the mean for at least 300 ms and also 2) 2 times 
the mean for at least 500 ms were selected as putative spindles. Intervals 
over 3 s were rejected; consecutive intervals within 500 ms were merged 
(unless the resulting spindle was greater than 3 s). Subsequently, addi
tional quality check (QC) procedure was applied. Putative spindles were 
discarded if the relative increase in non-spindle bands activity (delta, 
theta, and beta) was greater than the relative increase in spindle fre
quency activity (i.e. relative to all N2 sleep), thereby ensuring putative 
spindles preferentially reflect sigma band activity, and not general 

increases in signal amplitude, which is often due to artifact or other non- 
spindle activities. Based on the set of spindles that passed QC, we 
computed spindle density (count per minute), amplitude, duration, 
observed frequency, and chirp (intra-spindle frequency change 
computed as a difference in frequency between the first and the last half 
of a spindle with zero values meaning no change and negative values 
meaning intra-spindle frequency deceleration). 

4.6. SO detection 

Zero-crossings were identified based on the EEG signals band-pass 
filtered between 0.5 and 4 Hz. To define putative SO the following 
temporal criteria were satisfied: 1) a consecutive zero-crossing leading 
to negative peak was between 0.3 and 1.5 s; 2) a zero-crossing leading to 
positive peak were not longer than 1 s. With respect to amplitude 
criteria, two separate approaches were used, similar to Djonlagic et al 
(2020). First, an adaptive/relative threshold (our default) such that 
negative peak and peak-to-peak amplitudes were required to be greater 
than twice the mean (for that individual/channel). Second, an absolute 
threshold requiring a negative peak amplitude larger − 40 uV, and peak- 
to-peak amplitude larger then 75 uV. SO density (count per minute) as 
well as the mean amplitude of the negative peak, peak-to-peak ampli
tude, duration and the upward slope of negative peak were estimated for 
each channel. 

4.7. Coupling between SO and spindles 

For each channel we identified spindles that overlapped with 
detected SO and characterized their coupling using the following three 
metrics. First, we computed the proportion of spindles that overlapped 
with a SO (“gross overlap”). Using the filter-Hilbert method, we also 
estimated SO phase at the spindle peak, which was averaged (circular 
mean) across SOs for each channel (coupling angle at spindle peak). In 
addition, the inter-trial phase clustering assessed the consistency of non- 
uniform phase coupling between SO and spindles (coupling magnitude). 
Overlap and magnitude metrics were z-transformed using a null distri
bution of same metrics generated during 10,000 random permutations 
where time indices of the time series were shuffled in a manner that 
preserved the overall number of SOs, spindles and the gross overlap 
between SO and spindles (the latter is true only for the coupling 
magnitude). 

4.8. Exclusion criteria based on sleep data 

For all used datasets (NCH, CHAT, PATS and CFS), an additional 
exclusion criterion applied for the macro-architecture analysis was TST 
< 180 mins. For analysis of spectral power and spindles, additional 
exclusion criteria were applied: i) N of available epochs for each stage 
(N2, N3, REM) after outlier removal less than 10, ii) persistent line noise 
interference (SPK measure > 5 SD in least one channel at any stage), iii) 
outlier spectral power at 1 Hz (<4 SD or > 4 SD in least one channel at 
any stage) to target movement, ocular artifacts, general low signal to 
noise ratio, or at 25 Hz (>4 SD in least one channel at any stage) to target 
muscle activity artifacts. 

Signal polarity flips were observed in a portion of recordings in all 
samples (for details on polarity in several NSRR samples: https://zzz. 
bwh.harvard.edu/luna/vignettes/nsrr-polarity/) and additional exclu
sion criteria were necessary for analyses dependent on signal polarity – 
those involving SO and coupling between SO and spindles. Recordings 
with ambiguous polarity were removed for these analyses (-1 < T_DIFF 
< 1 at C3 or C4 during N2 stage from Luna’s POL command) and polarity 
of all recordings with T_DIFF > 1 at C3 or C4 during N2 stage was 
flipped. 

Final sample size and demographic characteristics for the primary 
samples used (for NCH and CHAT) are in Table 1. Characteristics of the 
final analytic sample of PATS that was included for brain age prediction 
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were: total N = 627, with 307 females, 384 White, 198 Black or African 
American individuals and 45 individuals of other ancestry, with a mean 
age of 6.3 years (range 3 – 13 years); and for CFS: total N = 635, with 
361 females, 271 Whites, 343 Blacks and 21 individuals of other 
ancestry, with a mean age of 39.4 years (range 6.7 – 88.5 years). 

4.9. Statistical analysis 

We used linear regression models of each sleep metric regressed on 
age, also controlling for sex and race/ethnicity. Outliers (using a 3 SD 
criterion) were removed for each sleep metric (repeated twice). In a 
control analysis we added Apnea-hypopnea index (AHI) computed as an 
average number of apnea and/or hypopnea events per hour of sleep as 
an additional covariate to linear regression models, which yielded 
almost identical results (Pearson correlation between signed -log 10p- 
value controlling and not controlling for AHI was > 0.99 in both NCH 
and CHAT samples). We also performed similar analysis using arousal 
index (AI) for a subset of individuals from the CHAT sample (N = 374, 
age range 5–10 years) for whom precomputed AI was available on 
NSRR. To describe effect sizes of age-related changes in sleep metrics, 
we also calculated Pearson correlations between sleep metrics and age. 
For metrics with suspected non-linear trajectories, we used Akaike’s and 
Bayesian information criteria to formally test if the quadratic model was 
a better fit to describe age-related change. 

In analyses of NCH clinical subgroups, we used linear regression 
models controlling for race, sex, AHI, co-occurring sleep diagnoses, 
other NDD diagnoses and medication use. For Sup. Fig. 5, prior to 
running a linear regression analysis, 3-SD outliers were replaced with 
NAs in two rounds and sleep metrics’ estimates were z-transformed to 
obtained standardized linear regression coefficients. P-values were 
adjusted for multiple comparisons (all sleep estimates n = 321) sepa
rately for each subgroup and tested effect (subgroup, subgroup by age 
interaction) using FDR method (Benjamini & Yekutieli, 2001). 

To predict individuals’ ages, we trained a multiple linear regression 
model using the sleep metrics studied here. After excluding subjects 
from NDD subgroups, we randomly split the non-NDD NCH sample into 
training (70 % of subjects) and held-out (30 %) sets. CHAT, PATS and 
NDD-NCH subgroups sample were retained as additional, independent 
testing sets. To reduce the number of features for prediction model, we 
removed highly correlated variables (abs r > 0.9 in non-NDD NCH 
training set). Remaining features (list is provided in Supp. Table 7) for 
all datasets were z-transformed using the mean and standard deviation 
of the training set. Sex and race were included as covariates in all 
models. Initially, the model performance in the non-NDD NCH training 
sample was estimated using 10-fold cross validations using mean 
explained variance (R2) and mean absolute error and their SD across 
folds. Further, the model was tested in four held-out validation sets 
(non-NDD NCH held-out sample, CHAT, PATS and NDD NCH set) and 
pearson’s correlation, mean absolute error and mean error between 
predicted and true chronological age were reported. 

We additionally applied an alternative to conventional linear 
regression: specifically, gradient descent boosting machines as imple
mented in the LightGBM machine learning library as implemented in 
Luna. Performance was near identical to the linear regression model, in 
this particular case, and so we retained the simpler model, as perfor
mance in terms of age prediction was already high. 

In the NDD NCH subgroups analysis of brain age gap we estimated 
the variability in the prediction of results by repeating the step of fitting 
the model 100 times with different, non-overlapping individuals from 
non-NDD NCH randomly assigned to held-out testing and training set 
each round. The NDD NCH subgroups were kept the same. Estimates of 
model performance – mean absolute error and mean error between 
predicted and true age – were then averaged across 100 rounds, as well 
as their min and max values. We used a two-sample t-test to test if there 
was significant difference in MAE and ME (mean error) between non- 
NDD NCH held-out testing set and each clinical subgroup in each 

round and reported the median p-value in Fig. 5 D. 
We applied the following steps to estimate similarity in all sleep 

variables (macroarchitecture, absolute and relative band power, spin
dles, SO estimates and coupling metrics) across different age bins of 
combined sample of PATS and CFS cohorts and DS group (Fig. 6D). First, 
we z-scored all sleep variables across individuals of the combined 
sample and NCH sample using mean and standard deviation of the 
combined sample of each sleep metric Then, we defined age bins in the 
combined sample (two-year non-overlapping windows centered at 3, 5, 
7, 9, 11, 13 and four-year non-overlapping windows centered at 16, 20, 
…, 80 years). Larger age windows for older ages were chosen due to 
expectation of lower rate of change. Another reason was to ensure that 
there were sufficient number of participants for each bin (at least 10). 
Then means were computed for each sleep metric across individuals 
belonging to a particular age bin in the combined sample, as well as the 
DS subgroup and non-NDD group of the NCH sample. Finally, the 
average absolute difference between DS (and non-NDD) means and each 
age bin means were computed and plotted as a function of age. 
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Barriga-Paulino, C.I., Flores, A.B., Gómez, C.M., 2011. Developmental changes in the 
EEG rhythms of children and young adults: Analyzed by means of correlational, 
brain topography and principal component analysis. J. Psychophysiol. 25 (3), 
143–158. https://doi.org/10.1027/0269-8803/a000052. 

Becker, S.P., 2020. ADHD and sleep: Recent advances and future directions. Curr. Opin. 
Psychol. 34, 50–56. https://doi.org/10.1016/j.copsyc.2019.09.006. 

Benjamini, Y., Yekutieli, D., 2001. The control of the false discovery rate in multiple 
testing under dependency. Ann. Stat. 29 (4), 1165–1188. https://doi.org/10.1214/ 
aos/1013699998. 
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