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Abstract 

This paper presents a comprehensive overview of the National Sleep Research Resource (NSRR), a National Heart Lung and Blood 
Institute-supported repository developed to share data from clinical studies focused on the evaluation of sleep disorders. The NSRR 
addresses challenges presented by the heterogeneity of sleep-related data, leveraging innovative strategies to optimize the quality and 
accessibility of available datasets. It provides authorized users with secure centralized access to a large quantity of sleep-related data 
including polysomnography, actigraphy, demographics, patient-reported outcomes, and other data. In developing the NSRR, we have 
implemented data processing protocols that ensure de-identification and compliance with FAIR (Findable, Accessible, Interoperable, 
Reusable) principles. Heterogeneity stemming from intrinsic variation in the collection, annotation, definition, and interpretation of 
data has proven to be one of the primary obstacles to efficient sharing of datasets. Approaches employed by the NSRR to address this 
heterogeneity include (1) development of standardized sleep terminologies utilizing a compositional coding scheme, (2) specification 
of comprehensive metadata, (3) harmonization of commonly used variables, and (3) computational tools developed to standardize 
signal processing. We have also leveraged external resources to engineer a domain-specific approach to data harmonization. We 
describe the scope of data within the NSRR, its role in promoting sleep and circadian research through data sharing, and harmoniza-
tion of large datasets and analytical tools. Finally, we identify opportunities for approaches for the field of sleep medicine to further 
support data standardization and sharing.
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Graphical Abstract 

Statement of Significance

This manuscript introduces the National Sleep Research Resource (NSRR), a pioneering repository providing access to a large 
quantity of diverse sleep-related data, crucial for understanding sleep disorders and their systemic impacts on health and health 
disparities. Adhering to FAIR principles, the NSRR addresses data heterogeneity in sleep data by standardizing sleep terminologies, 
specifying comprehensive metadata standards, harmonizing commonly used data, and developing computational tools to stan-
dardize signal processing. This platform is vital for bridging knowledge gaps in sleep research, promoting innovative data analysis, 
and enabling translational research. Its approach can inform data sharing, metadata, and Common Data Element development 
in other domains, significantly enhancing scientific discovery and productivity, statistical power, rigor, and reproducibility in sleep 
and circadian science.

The generation of massive volumes of biomedical data from mul-
tiple sources in combination with a need for greater rigor and 
reproducibility of scientific research findings has spurred efforts 
to promote data sharing and standardization to create “big 
data” resources. Over the last 25 years, the National Institutes 
of Health (NIH) invested in various initiatives to support these 
goals, including, but not limited to: (1) the creation of over 130 
 domain-specific biomedical data repositories and knowledge-
bases; (2) the Big Data 2 Knowledge initiative that supported the 
development of tools and training in big data analytics [1, 2]; 
(3) cloud-based “ecosystems” to store, access, and analyze data, 
such as BioData Catalyst [3]; and most recently, (4) the NIH Data 
Management and Sharing requirement for NIH grantees to pro-
pose formal plans for standardizing and sharing newly gener-
ated research data [4]. Much effort was focused on areas such as 
cancer and imaging where opportunities were identified to apply 

machine learning for improved diagnostic and prognostic tools; 
genomics, which requires extremely large sample sizes to detect 
typically small effects; and electronic health records, which are 
continuously generated for tens of millions of people, resulting 
in huge amounts of “real world” clinical data that are highly 
under-utilized.

Sleep and circadian data also present unique big data opportu-
nities due to the fundamental role of sleep and circadian rhythms 
in nearly all physiological systems, as well as the richness of sleep 
and circadian datasets that include data on multiple physiologi-
cal systems measured in temporally precise patterns over hours, 
if not days. The value of repositories and tools for accessing and 
analyzing physiological signals such as those obtained by elec-
trocardiography and electroencephalography was recognized as 
early as 1999 when the NIH invested in the PhysioNet Research 
Resource for Complex Physiologic Signals. Its aim was to create 
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“archives of digital recordings of a wide variety of physiologic sig-
nals and related data and associated tools from healthy subjects 
and patients with a variety of conditions.” However, until 2013 
when the National Sleep Research Resource (NSRR; sleepdata.
org) was launched, there were no repositories that specifically 
focused on sleep-related data and the needs of the sleep and 
circadian research communities. Over its 10-year history, while 
continually ingesting new datasets, the NSRR has iteratively 
developed approaches for improving data representation and 
processes for improving the accessibility and quality of annotated 
 sleep-related summary and raw signal data. Some approaches 
address problems that are readily applicable to all data types, 
while others reflect unique aspects of sleep data. In this paper, 
we: (1) summarize the potential for sleep and circadian data to 
accelerate scientific discovery and general challenges; (2) provide 
an overview of the NSRR and a sample of its data; (3) describe 
specific challenges that impact data standardization and harmo-
nization; (4) describe approaches for developing study-specific 
and  variable-specific metadata and the use of signal processing 
tools to address FAIR principles and facilitate data harmoniza-
tion; and (5) propose future directions. We hope that this paper 
will increase awareness of the value of sleep data repositories 
generally, as well as improve the understanding of the organi-
zation and content of the NSRR specifically, inform future data 
collection and annotation procedures to facilitate data harmoni-
zation, and better prepare sleep researchers to meet current NIH 
data sharing requirements.

Untapped potential of sleep and circadian data: 
motivations and goals of the NSRR
Opportunities.
Robust sleep and circadian data repositories could propel multiple 
scientific discoveries, enhancing the understanding of numerous 
complex physiological systems while filling critical knowledge 
gaps related to sleep disorders and their underlying population 
distributions, risk factors, etiological mechanisms, and impact 
on health and health disparities. Sleep disorders are prevalent, 
widely under-recognized and under-treated, and associated with 
significant morbidity and mortality patterns that are incompletely 
understood [5]. There are therefore numerous research questions 
that require access to sleep data from large,  well-characterized, 
and diverse samples connected to clinical and outcome data. 
Notably, sleep research provides opportunities to understand 
multiple physiological processes, disease mechanisms, and 
health outcomes. For example, sleep traits are genetically corre-
lated with multiple cardiovascular, metabolic, and hematological 
traits [6], providing opportunities to study shared genetic mech-
anisms to uncover potentially novel etiological pathways and 
 inter-relationships underlying common chronic diseases. Sleep 
and circadian data provide a unique window into the dynamics 
and interactions of multiple physiological processes and sys-
tems. For example, the neurophysiological manifestations of sleep 
as measured by sleep macro-architecture (e.g. stages) and sleep 
micro-architecture (e.g. sleep spindle activity) change dynami-
cally over very short time scales and provide windows into mul-
tiple brain-peripheral physiological interactions [7]. Additionally, 
the occurrences of sleep-related physiological events such as 
apneas, arousals, cardiac arrhythmias, periodic limb movements, 
and seizures occur in temporally complex and informative pat-
terns, reflecting the influences of variations in sleep state, body 
position, circadian phase, autonomic function, and prior physio-
logical events [8–10]. Analyses of streams of diverse data provide 

opportunities to discern the “cross-talk” across multiple physiolog-
ical systems and to develop temporally-based interventions that 
anticipate and potentially prevent adverse physiological events. 
High dimensional sleep data are ripe for using artificial intelli-
gence and machine learning for developing algorithms that could 
transform the clinical management of patients with sleep disor-
ders, but require interrogation of large and diverse datasets [11].

General challenges:
A major barrier to pursuing the many exciting research oppor-
tunities of sleep and circadian science relates to the limitations 
of individual datasets that often lack diversity (socio-economic, 
race and ethnicity, age, health conditions, exposures, etc.) and are 
often limited by ascertainment biases, precluding assessments of 
effect moderation and limiting generalizability. Individual data-
sets with small or modest sample sizes reduce statistical power 
and increase the likelihood of spurious inferences.

In the absence of very large, single-source, and richly pheno-
typed sleep datasets, there is a need to make multiple relevant 
datasets centrally accessible, and to define and represent those 
data so that they can be readily combined. For any data type, 
heterogeneity in data collection procedures, annotations, and 
labeling reduce the efficiency of accessing, combining, and ana-
lyzing such data. These issues are especially pertinent for sleep 
data for which large volumes are data are routinely collected 
for clinical purposes by thousands of sleep laboratories per year 
and by numerous research programs, but are collected using 
protocols that are largely not standardized with respect to col-
lection procedures (both device-based and  patient-reported) 
and labeling of data elements [12]. Therefore, a major need 
for a sleep data repository is to ensure that data ingested from 
diverse sources are well-curated, clearly annotated, and harmo-
nized at various semantic and signal processing levels, ideally 
using standards that support the needs of the sleep as well 
as informatics communities. Providing access to  well-annotated 
data from multiple sources also provides scientific opportunities 
to understand sources of variation due to technical (due to sen-
sors, scorers, algorithms; as described [13]) and  non-technical 
(socio-demographic, environmental, and genetic) factors [14]. 
This information can guide the interpretation of data from 
various sources, inform best practices in data collection, and 
identify important population sources of variation in biological 
processes.

NSRR: Content and Access
The NSRR provides the scientific community with centralized and 
secure access to growing numbers of datasets that include objec-
tive and/or self-reported measurements of sleep and/or circadian 
rhythm, including data from polysomnography, actigraphy, and 
patient-reported questionnaires. Data include raw physiological 
signal data, summary sleep data, and annotations and associated 
metadata, with ongoing work to generate and share the results 
of advanced signal analyses that quantify neurophysiological, 
electrocardiographic, and respiratory-related metrics. As avail-
able (for each dataset), demographic, anthropometry, medical 
history, laboratory, and clinical outcome data are included. Data 
are ingested using a process that includes documentation of eth-
ical review and any limitations to data sharing, ascertainment 
that data are de-identified and do not include Protected Health 
Information, and review of the integrity of the incoming data. The 
NSRR is supported by a contract from the National Heart Lung 
and Blood Institute (NHLBI) with Brigham and Women’s Hospital 
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(BWH), Boston MA; regulatory procedures are compliant with 
BWH’s institutional policies.

Data is made available to the community through a secure 
on-line data use agreement and tools for efficiently download-
ing large files [15, 16]. Data distribution and use are governed by 
each dataset’s original data use limitations. Investigators who 
request access to specific datasets (Supplemental Figure S1) 
and consent to required data access and use agreements (with 
BWH) can directly download files that may include polysomno-
grams recordings encoded as European Data Format (EDF) files, 
polysomnogram annotation files (e.g. containing scored “events” 
or labeled epochs), demographic information with linked varia-
bles, forms used for data collection, and study documentation. 
To date, 7,820 data requests from 11,373 registered users were 
submitted and 4,989 were granted access to datasets hosted by 
the NSRR (unapproved data requests mostly were due to requests 
that were inconsistent with dataset-specific participant consent, 
such as requests by a commercial entity to use data unapproved 
for commercial use). In total, 1.36 petabytes of information have 
been downloaded from the repository with an average download 
rate of 25-35 terabytes per month. As a result of this activity and 
the subsequent use of downloaded information in secondary 
research and analysis, the NSRR has been cited as a principal 
resource in approximately 400 indexed publications [17].

The data within the NSRR were initially seeded by data col-
lected under the auspices of the Sleep Reading Centers (directed 
by SR), with later data contributed by investigators responding to 
journal or sponsor requirements to share data, or as a result of 
an NSRR-driven data sharing campaign. As of November 2023, a 
total of 27 datasets had been incorporated into the NSRR, includ-
ing data from 16 cohort or observational studies, 6 clinical trials, 1 
experimental database, 3 clinical data banks, and 1 animal study 
[18–33]. These include datasets from a number of landmark stud-
ies in the field of sleep research conducted from 1995 to the pres-
ent (Table 1). Collectively, sources include de-identified data from 
46 214 subjects including (1) polysomnogram recordings with 
overnight multi-channel neurophysiological, cardiac, and respira-
tory data, (2) actigraphy recordings capturing multi-day 24-hour 
sleep-wake patterns, (3) responses to surveys asking questions 
about sleep habits, sleep quality, and the adverse effects of dis-
rupted sleep, and (4) demographic information, anthropometric 
measurements, biochemical parameters, lifestyle behaviors, and 
data pertaining to comorbid medical conditions, outcomes, and 
events. Several “at-a-glance” matrices provide researchers with 
the ability to quickly identify datasets that include datatypes 
most relevant to their needs. The broad range of data within the 
NSRR is organized into conceptual domains with nested subdo-
mains, as summarized (Figure 1).

Adherence to FAIR Principles
Adherence to FAIR (findable, accessible, interoperable, and reus-
able) principles [34] is a central tenet for modern data manage-
ment and is included in recent federal data sharing requirements. 
At each stage of development of the NSRR, efforts were focused 
on designing and implementing a system that adheres to these 
principles. Prior to its initial release, the combined input of com-
puter scientists, data scientists, sleep experts, and informaticians 
fostered the iterative development of a system targeted to make 
hosted data accessible by incorporating (1) a streamlined regis-
tration process that enables users to submit requests for access 
to multiple datasets under a unified data access and use agree-
ment, and (2) a secure mechanism for the reliable transfer of 

downloadable EDF files. During the ingestion process, the NSRR 
team collaborates with the contributor to further: (3) develop 
consistent study documentation, (4) provide standardized meta-
data for key variables, (5) map selected variables to standardized 
terms and concept tags, and (6) conduct signal processing to gen-
erate canonical sets of harmonized sleep signals with standard-
ized labels and sampling rates. These data ingestion procedures 
were codified and modified to reflect the requirements of NIH’s 
2023 Data Management and Sharing Plan requirements, includ-
ing specification of data formats and metadata standards, and 
have been publicized through interactions with professional soci-
eties, social media, and NSRR-sponsored webinars.

Specific Challenges: Heterogeneity in Data
There are multiple sources of heterogeneity in sleep data that 
impact the ability to easily find, combine, and reuse data, some of 
which reflect challenges faced by any federated data repository, 
while other variations are more specific to sleep research. As dis-
cussed in other publications [12, 35], and detailed below, the var-
iability of sleep data reflects variations in collection procedures, 
annotations, and formatting (Figure 2), each of which requires 
specific approaches for improving the usability of the data.

• Variability of polysomnography data collection—The 
American Academy of Sleep Medicine (AASM) publishes 
guidelines for polysomnography that include minimal 
requirements related to channels recorded, sensors used, 
and filter and sampling rates. However, these guidelines 
allow for a broad latitude in how data are collected (e.g. 
several permissible sensor types); annotation procedures 
(e.g. does not prohibit use of “hot keys” for annotating 
events such as arousals or apneas); procedures for achiev-
ing consistent polarity of recorded signals; and how data 
are labeled (e.g. there is no widely-adopted and compre-
hensive standardized nomenclature used to label the 
physiological channels or event annotations). Further var-
iability in analysis of EEG, EMG, EOG, and ECG data may 
result from variations in choice of reference electrodes 
and electrode derivations, which can markedly impact 
the amplitude and content (e.g. features) of the measured 
signals, and often is not well-documented. Variations in 
equipment hardware can output signals that are filtered 
in poorly documented ways, impacting secondary analysis 
of measures such as airflow limitation. Heterogeneity also 
arises from the expanded use of diagnostic devices other 
than the overnight in-laboratory polysomnogram (Type I 
device). In fact, approximately 70% of clinical sleep stud-
ies currently utilize home-based devices that collect a lim-
ited number and variable types of physiological data [36]. 
These devices, which are increasing in numbers and diver-
sity, are categorized as Types II, III, and IV, with only Types 
I and II including EEG data collection. Moreover, the Type 
III and IV devices include a wide variety of sensors, some 
of which are not routinely used in the  “gold-standard” Type 
I studies (e.g. peripheral arterial tonometry), and often do 
not include sensors traditionally considered to be core for 
defining event subtypes (e.g. nasal flow). This variability 
in data types is reflected in the data ingested into NSRR. 
Some datasets utilized protocols for collecting compre-
hensive polysomnography studies monitored by sleep 
technicians in a laboratory setting, while others relied on 
a variety of home sleep study devices. As a result, across 
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Table 1. National Sleep Research Resource (NSRR) datasets (as of March 2024)

Subjects Age 
range

Time frame PSG/HSAT 
count

Actigraphy 
count

Variable 
count

Sleep test 
type

Average 
actigraphy 
days

On 
dbGaP

Sleep Heart Health Study 5804 40–89 1995–2010 8444 0 1896 II 0 Yes

Honolulu-Asia Aging Study of sleep 
apnea

718 79–97 1999–2000 717 0 11 II 0 No

Wisconsin sleep cohort 1123 37–85 2000–2015 3671 0 360 I 0 No

Cleveland Family Study 735 6–88 2001–2006 730 0 2657 I 0 Yes

Study of osteoporotic fractures 461 65–89 2002–2003 453 0 1146 II 0 Yes

Apnea Positive Pressure Long-term 
Efficacy Study

1516 18–84 2003–2008 1104 0 353 I 0 No

Outcomes of Sleep Disorders in Older 
Men (MrOS Sleep Study)

2911 65–89 2003–2012 3933 0 649 II 0 Yes

Cleveland Children’s Sleep and Health 
Study

517 16–19 2006–2010 515 0 257 I 0 No

Childhood adenotonsillectomy trial 1243 5–9 2007–2012 1639 0 2901 I 0 No

Home positive airway pressure 373 20–80 2008–2010 414 0 120 I/III* 0 No

Hispanic community health study/
study of Latinos

16,415 18–76 2009–2013 12 088 1,887 1032 III 7 Yes

Heart biomarker evaluation in apnea 
treatment

318 45–75 2010–2012 591 0 790 III 0 No

Multi-ethnic study of atherosclerosis 2237 54–95 2010–2013 2056 2,159 627 II 7 Yes

Nulliparous pregnancy outcomes study 
monitoring mothers-to-be

3012 14–44 2011–2013 5341 0 392 III 0 Yes

Best apnea interventions in research 169 46–76 2011–2014 518 0 205 III 0 No

Apnea, bariatric surgery, and CPAP 
study

49 26–64 2011–2014 132 0 108 I 0 No

One year of actigraphy 1 62 2016–2017 0 1 0 n/a 0 No

The economic consequences of 
increasing sleep among the urban poor

597 25–55 2017–2019 0 597 0 n/a 28 No

Forced desynchrony with and without 
chronic sleep restriction

28 20–34 2000–2016 1000 28 32 I 25 No

Nationwide Children’s Hospital Sleep 
DataBank

3673 0–58 2017–2019 3984 0 31 I 0 No

Maternal sleep in pregnancy and the 
fetus

106 18–42 2015–2019 106 0 37 I 0 No

Assessing nocturnal sleep/wake effects 
on risk of suicide

971 18–52 2020–2021 0 0 301 n/a 0 No

Efficacy assessment of NOP agonists in 
non-human primates

5 14–19 2019 10 0 0 I 0 No

Mignot nature communications 3000 18–91 Varies 1438 0 0 I 0 No

Stanford technology analytics and 
genomics in sleep

1881 13–84 2018–2019 2055 2055 441 I 7 No

Cox and Fell (2020) sleep medicine 
reviews

5 0–100 3 0 0 I 0 No

Sleep health in infancy and early 
childhood

433 0-2 2016–2020 0 1,257 319 n/a 7 No

Sleep disordered breathing, ApoE and 
lipid metabolism

712 13–90 2003–2007 712 0 67 I 0 No

PSG: polysomnography; HSAT: home sleep apnea test.
Sleep test type: Type I: attended studies that minimally include the following channels: EEG, EOG, ECG/Heart rate, chin EMG, limb EMG, respiratory effort at 
thorax and abdomen, oxygen saturation, air flow from nasal canula or thermistor. Type II: full polysomnograms (as in Type I) but performed in an unattended 
setting. Type III: home sleep test (HST), performed in an unattended setting with a minimum of 4 channels, minimally including two respiratory movement/
airflow, 1 ECG/heart rate, and 1 oxygen saturation channel. Type IV: home sleep test (HST), performed in an unattended setting with a minimum of 3 channels 
that allows calculation of an AHI or RDI as the result of measuring airflow or thoracoabdominal movement.
*Home positive airway pressure: Type I in baseline and Type III in follow up visit.
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studies (and sometimes within studies when data were 
aggregated across different sleep laboratories), different 
recording approaches were used to measure airflow, oxy-
genation, respiratory effort, muscle tone, limb movement, 
eye movement, and brain activity. Such differences not 
only affect the availability of core parameters within and 
across studies, but also the ability to define events and cre-
ate uniform metadata, and the overall precision and accu-
racy of measurements.

• Event Definitions—The AASM publishes criteria for scoring 
specific events within the sleep study (respiratory events, 
stages, leg movements, etc.) [37]. However, the criteria for 
scoring events (particularly hypopneas) have changed 
multiple times over the last 15 years. These changes may 
result in large differences in disease classification [38, 39]. 
In addition, many key terms used to annotate events and 

define sleep disorders have evolved [40]. The original met-
ric used to classify sleep disordered breathing focused 
on quantifying the number of apneic events per hour to 
calculate an apnea index [41]. Subsequent definitions 
expanded criteria to include hypopneas characterized by 
reductions in airflow with decreased oxygen saturation to 
calculate a broader index, which initially was labeled a res-
piratory disturbance index, and later an apnea-hypopnea 
index (AHI) [18]. As the AHI became accepted as a stand-
ard measure of obstructive sleep apnea, thresholds were 
proposed to classify disease as mild, moderate, and severe 
disease [42, 43]. However, the AHI was shown to be widely 
variable depending on which definitions were applied to 
define hypopneas (with variable criteria for defining crit-
ical changes in breathing amplitude and/or inclusion of 
desaturation and/or arousal). Due to lack of consensus, 
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Figure 1 (a) and (b) Measures and Instruments across the National Sleep Research Resource (NSRR) Sleep Questionnaires and Polysomnography 
Domain. Bar lengths represent the number of variables in each domain or subdomain aggregated across the full range of datasets. In (a), the colored 
bar represents variables from specific survey instruments, while the grey bar represents standalone variables. MEQ: Horne-Ostberg Morningness 
Eveningness Questionnaire; SDS Checklist-25: Sleep Disorders Symptom Checklist-25; DDNSI: Disturbing Dream and Nightmare Severity Index; 
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the AASM even published two definitions characterized 
as “recommended” and “alternative.” Subsequent revi-
sions proposed more unified “recommended” and “accept-
able” hypopnea definitions that still vary with respect to 
criteria related to associated oxygen saturation and/or 
arousal [44, 45]. Additional measures used to character-
ize event subtypes include detection of increased respira-
tory effort with cortical arousal classified as a respiratory 
 effort-related arousal (RERA) and a summation of the AHI 
and RERA index designated as the respiratory disturbance 
index (RDI) [37, 46].

• Data formatting—Sleep data are routinely collected and 
saved using a variety of proprietary software dictated by 
the specific equipment used. To avoid the need to access 
multiple software tools for data analysis and to stand-
ardize the presentation of data, the NSRR requests data 
contributors to transfer polysomnography data as EDF 
files (https://edfplus.info/), a standardized format devel-
oped to promote sleep data exchange [47, 48]. However, 
many laboratories do not routinely save data in EDF, 
requiring support for exporting and de-identifying data 
for data-sharing. While the NSRR can assist contribu-
tors with these tasks (i.e. providing deidentification tools 
or guidance on best practices for exporting data), these 
procedures are generally not automated, and their imple-
mentation can delay data sharing efforts. In addition to 
sometimes containing subtle corruptions, e.g. due to trun-
cations of data transfers, EDF files themselves can vary in 
content and format: for example, (1) with continuous or 
discontinuous (gapped) recordings, (2) missing physical 
unit or transducer header fields, (3) inappropriate dynamic 
ranges or misspecified units, (4) the presence of annota-
tions encoded within the EDF, or (5) with single night data 
split across multiple EDF files. Further, annotation files can 
occasionally be temporally misaligned with respect to the 
underlying signal data.

Many users are interested in training algorithms to automati-
cally score events within the polysomnogram, or to extract novel 
metrics based on scored events. Those goals require access to the 
annotation files that provide tabular scored events, delineated 
by their duration, inter-event intervals, and associated features 
(e.g. desaturation). However, such files are encoded in a range of 
different formats, and the labeling, encoding, and directory struc-
tures of associated data files vary.

• Actigraphy—Actigraphy data are also saved in a variety of 
formats and lack a single “standard.” There are scant pub-
lished recommendations that guide data collection, with 
variability in what data are saved (counts, accelerometry 
motion), sampling rates, and auxiliary data (light, event 
markers, etc.).

• Patient-reported outcomes—There is not a standard set 
of Common Data Elements recommended for sleep or 
circadian research. Accordingly, the datasets within the 
NSRR include a variety of sleep questionnaires such as 
the Epworth Sleepiness Scale, Women’s Health Initiative 
Insomnia Rating Scale, Pediatric Sleep Questionnaire, 
Pittsburgh Sleep Quality Index, and Functional Outcomes 
of Sleep Questionnaire. Some patient-reported data are 
based on single items, subsets of items, or paraphrased 
questions abstracted from one or more instruments, with 
response categories and/or rating scales that are differ-
ent from the validated survey instruments. Moreover, 
the reference period (e.g. “in the past two weeks”) 
vary across studies and often are not preserved in the 
data dictionary submitted by data owners, which pose 
challenges to metadata documentation and chronicity 
assessment of certain sleep disorders. Many items within 
questionnaires overlap different domains (e.g. insomnia 
vs sleep quality; sleepiness vs functional impairment), 
which makes mapping those items to specific domains 
challenging.
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Figure 2. Concept map of selected sources of heterogeneity in sleep data. This diagram summarizes the sources of heterogeneity in sleep and 
circadian data discussed in this paper.
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Approaches for Addressing Sleep Data 
Heterogeneity, Developing Metadata, and Data 
Harmonization
To minimize the effects of heterogeneity while providing opportu-
nities to assess and learn from sources of heterogeneity, data are 
ingested using a well-defined process that captures critical meta-
data at the study and variable level. Innovative approaches that 
NSRR has employed to address data heterogeneity have stemmed 
from integrated initiatives that include (1) specification of study-
level and variable-level metadata, including use of compositional 
terminology and mapping of terms to a common standard, as 
possible, (2) standardization of sleep-wake period information, (3) 
post-processing polysomnography data to standardize and anno-
tate the data and channel labels, and (4) integration and exten-
sion of harmonized variables. Figure 3 outlines the overview for 
data ingestion and metadata generation.

Specification of study-level metadata.
To generate a template for the specification of study-level 
metadata we adopted a reporting format based on checklists 
promoted by the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) initiative [49]. Using founda-
tional NSRR datasets as models, we traced the data collection, 
processing, and analysis approaches involved in different types 
of studies to identify sources of heterogeneity that could be 
specified as metadata elements. We compiled a set of key value 
pairs for each of these elements that we used to generate a 
metadata intake form incorporating (1) a study overview sec-
tion providing information about the investigator(s), support, 
study design, eligibility and exclusion criteria, exposures, inter-
ventions, outcomes, access restrictions, and a list of validated 
survey instrument for collecting patient-report outcomes, (2) 
an actigraphy data section providing information about data 
collection and processing including recording devices, software, 
sampling rates, annotation methods, and definitions of specific 
times and periods of interest, and (3) a polysomnography data 

section providing information about data collection and pro-
cessing including equipment, montages, sampling rates, data 
formats, scoring methods, and definitions of thresholds used 
to identify hypopnea events. This form has been deployed as a 
spreadsheet incorporating selectable and extensible options for 
each element that has been integrated into the NSRR data dep-
osition process. Information abstracted from completed forms 
has been used to generate a matrix that provides a sortable 
filtered overview of the studies included in the NSRR with direct 
links to available datasets (19).

Specification of variable-level metadata
In the early stages of development of the NSRR we recognized 
that there was significant variation in the range and depth of 
metadata available for variables in many datasets. While we 
knew that advanced cross-cohort search capabilities might make 
it possible to retrieve similarly labelled variables from different 
datasets [50, 51], we were also aware that inadequate character-
ization of the provenance of these variables would make it diffi-
cult to determine if they were comparable.

The original plan for the NSRR called for the definition of a sleep 
research ontology that would serve as the basis for a structured 
vocabulary to characterize dataset variables. While this approach 
was conceptually appealing, in practice the development of an 
extensible ontology proved to be a cumbersome process that led 
to significant delays in the deployment of usable resources. One 
challenge was the ability to readily expand upon and integrate 
with existing ontologies (SNOMED and LOINC) due to their limited 
coverage of sleep terms. As a workable alternative, we compiled a 
set of canonical terms abstracted from variables included in the 
larger foundational datasets. These terms were edited for clarity 
to provide precise definitions of origins, thresholds, and states 
before they were added to a curated data dictionary. We were sub-
sequently able to link variables in each dataset to terms in this 
data dictionary, enabling them to serve as points of connection 
for cross-cohort queries. When it proved to be feasible, additional 
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Figure 3: Outline of data ingestion and metadata generation processes in NSRR. This diagram illustrates the workflow required to generate and 
curate enhanced metadata in the NSRR. The original metadata consists of PDF files of study manuals, forms, and data dictionaries. Information 
extracted from these resources is categorized as study-level, file-level, or variable-level metadata during the data ingestion process. This structured 
metadata is reviewed and extended to generate several output products including: (1) semi-structured metadata in the form of a README file 
that serves as a dataset introduction page on the NSRR website; (2) a version-controlled standardized data dictionary that incorporates standard 
conceptual domains/subdomains and enhanced variable-level metadata including relevant study-level metadata, provenance information, hyperlinks 
to data collection forms, and standardized tags; (3) summary statistics for each variable stratified by common demographic groupings; (4) harmonized 
data for selected groups of variables that are comparable across datasets; (5) enhanced search results using standardized NSRR tags; and (6) an at-a-
glance matrix showing the availability of data by category and PSG channel. The right panel shows a screenshot of variable-level metadata for the 
“ahi” variable integrated into the NSRR after review and curation.
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metadata elements were appended to linked variables in the form 
of tags providing information about the source, timing, equipment, 
and methodology used to collect data. We also linked, when able, 
terms to sleep-related terms in the National Library of Medicine’s 
(NLM) Common Data Element library. However, coverage of sleep 
data within the NLM is currently limited.

This parallel approach to the specification of study-level and 
variable-level metadata has streamlined the workflow required 
to integrate datasets submitted for inclusion in the NSRR. 
Minimizing the ambiguity of metadata mapped at both levels 
effectively serves to improve the accuracy of cross-cohort que-
ries conducted to identify comparable variables retrieved from 
disparate datasets.

Compositional terminology.
A special problem in specifying metadata and adopting uni-
form terminology relates to the marked variation in definitions 
of apnea and hypopneas, both over time and across datasets. To 
address this problem, we developed a compositional terminology 
configured to generate compound labels that can be parsed to 
provide fully qualified metadata pertaining to specific variables. 
To accommodate the full range of variable-level metadata per-
taining to indices of sleep disordered breathing, we developed a 
compositional terminology modeled after the  post-coordination 
approach utilized by the SNOMED CT system to define complex 
concepts [52]. This flexible scheme can be used to generate a 
compound label for each variable comprised of a root compo-
nent and qualifying suffix components. The root component 
includes linked abbreviations that designate the type of event 
measured (Event), the measurement recorded (Data type), and 
any qualifiers used to characterize the measurement (Data 
qualifier) (Supplementary Table S1). A suffix component sepa-
rated by an underscore can be appended to designate a sleep 
stage and body position, and additional suffix components can 
be added to designate a data source and level of oxygen satu-
ration or desaturation. This scheme also incorporates precom-
piled suffix components that correspond to specific criteria used 
to identify hypopneas based on varying definitions. The labels 
generated using this compositional terminology can be parsed 
by algorithms to enable large scale mapping and harmonization 
of variables. Those variables that are mapped to labels can be 
automatically converted between wide and long data formats. 
When converted to a long data format, the information encoded 
in each label can be extracted to generate a profile of semantic 

terms. This approach has proven to work well with polysomnog-
raphy and actigraphy data which tend to have many permuta-
tions of similar measures. We are also assessing the utility of 
apply a compositional terminology to other types of sleep data 
such as self-reported questionnaire items.

Defining core sleep-wake information.
One of the initial challenges in sleep data standardization 
relates to the inconsistency in the terminology used to specify 
time points and intervals describing sleep and wake periods. 
Depending on the context and usage, “time” might refer to a 
specific point in time or to an interval between two time points. 
While “duration” and “period” could both be taken to correspond 
to intervals, they were often used interchangeably in proto-
col descriptions and data dictionaries without any indication 
of whether they referred to intervals between designated time 
points or to specific intervals when subjects were determined to 
be awake or asleep.

Recognizing the need to develop internally consistent terms 
to distinguish time points and intervals prompted us to compile 
a list of key concepts used to define sleep-wake intervals in 
available NSRR study protocols. These included specific time 
points, intervals between time points, and states within inter-
vals. Review of study documentation and research publications 
helped to identify commonly used terms that could be mapped 
to specific concepts. This in turn enabled us to designate stand-
ardized terms that incorporate precise definitions of “time,” 
“period,” and “duration” that can be used to delineate distinct 
intervals, and to visualize their inter-relationships graphically 
(Figure 4). In the terminology developed based on these defi-
nitions, “time” refers to a specific point in time that is either 
recorded as a clock time or marked by when an event starts 
or ends. “Period” refers to a continuous interval between two 
specific time points defined a priori, while “duration” refers to 
the sum of the lengths of multiple intervals describing a specific 
state or condition, wherein the state can be further specified as 
sleep stages. Adoption of this standardized terminology allows 
for unambiguous demarcation of the intervals and sleep-wake 
states used to characterize the state-specificity of respiratory, 
cardiac, electroencephalographic, and movement-related events. 
Use of structured definitions also allowed inconsistencies in 
data calculations to be identified. For example, in one instance, 
applying standardized nomenclature identified that a summary 
respiratory index was calculated erroneously to include events 
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Figure 4: Sleep–wake terminology schema. To disambiguate notations that refer to different time points, sleep intervals, periods, and durations, the 
NSRR utilizes a visual schema that identifies (a) Time points (going to bed, falling asleep, waking up during sleep, waking up after sleep, getting out of 
bed), (b) intervals (recording, in-bed), and (c) states (awake, asleep). Terminologies based on these designations are organized in reference to (d) clock 
times (recording start time, lights-off/in-bed time, sleep onset, sleep offset, lights-on/out-bed time, recording end time), (e) periods (recording period, 
in-bed period, sleep period, sleep onset latency), and (f) durations (sleep duration = sleep period—wake after sleep onset (WASO), wake after sleep 
onset = sleep period—sum of sleep durations within the sleep period). Note that other iterations could further distinguish stages (N1, N2, NREM, and 
REM) within states.
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in the interval between recording start and end times rather 
than only during the time asleep.

Standardization of data represented within the 
polysomnogram, including channel labels.
By definition, the principal indices used to classify sleep-related 
physiological disturbances rely on the identification and quantifi-
cation of events annotated from the polysomnography recordings. 
As described above, the variation in data collection, annotation, 
and scoring approaches introduce considerable heterogeneity. 
During its initial phase, NSRR’s computer scientists and biomed-
ical engineers developed several signal processing tools, tailored 
to working with NSRR data. Tool development was informed by 
the needs of the local team as well as feedback from the User 
Community solicited during community outreach events. The 
NSRR team has further developed a robust signal processing 
pipeline for sleep data that can be applied both to existing and 
new NSRR datasets, as well as users’ own sleep studies uploaded 
to the cloud. Details of these tools will be reported in a subse-
quent publication, but include:

• EDF Annotation Translator: this provides the framework for 
reading annotations stored in multiple file formats such as 
XML, CSV, and text files, and transforms them to a standard 
XML file format with Sleep Resource Ontology concepts for 
defining the events.

• Altamira: an EDF Viewer allows the display of signals and 
standardized annotations

• Luna (http://zzz.bwh.harvard.edu/luna/): is a C/C++ toolset 
and R extension library for the manipulation and analysis 
of large numbers of EDFs, designed with both paralleliza-
tion and working with NSRR annotation data in mind; it 
can also be deployed as a Docker container, to facilitate 
migration to the cloud computing environment. These 
tools support an NSRR analytical pipeline (NAP) that identi-
fies primary signals and annotations; re-labels polysomno-
grams using canonical labels; and provides a standardized 
“NSRR” version of data that has been re-referenced and 
re-sampled to a common standard. These tools include a 
series of semi-automated checks on incoming data, and 
outputs a more technically uniform set of signal and anno-
tation files. For example, we employ steps to (1) identify 
and potentially fix technical issues with EDFs, (2) flag noisy, 
flat or duplicate signals, (3) check EEG polarities, (4) check 
the consistency and alignment of stage annotations with 
the signal data, and potentially fix misaligned staging data, 
(5) automatically relabel channels and annotations, poten-
tially re-referencing, resampling or rescaling signals as 
needed, and dropping redundant or undocumented chan-
nels, and (6) generate a battery of statistics summarizing 
sleep macro- and micro-architecture, with a focus on the 
EEG.

A challenge in analyzing sleep signal data relates to a lack of 
standards or requirements that could be used to indicate data 
are of sufficient quality for supporting specific, or a set of broad, 
applications. The NSRR team prioritizes data modifications 
aimed at enhancing usability—such as making physical units, 
sampling rates, file formats, or channel nomenclatures similar 
between and within studies. This approach deliberately avoids 
altering specific information content to achieve a particular 
minimum standard, recognizing that the appropriateness of 

such standards varies according to the specific research ques-
tion and analytical methods employed. For example, stand-
ards that flag a given recording suitable for one analysis (e.g. 
examining spectral properties of the stable NREM EEG) may not 
apply to others (e.g. studying sleep onset or the relationship 
between sleep and circadian factors). Future work may include 
developing an array of diagnostic metrics and annotating these 
for their relative applicability for different purposes. However, 
ultimately, decisions related to data quality need to be made 
by the researchers who best understand their specific research 
questions.

Harmonization Steps
The process of data harmonization focuses on the specification 
of homogenized phenotypes that can be used to identify and 
characterize potentially comparable variables abstracted from 
different datasets, as exemplified by the work of the Trans-Omics 
for Precision Medicine (TOPMed) initiative [53]. While we were 
able to utilize resources provided by the TOPMed and BioData 
Catalyst projects to harmonize a range of non-sleep variables in 
NSRR datasets (including age, sex, race, ethnicity, smoking sta-
tus, body mass index, and blood pressure), we recognized that 
the inherent complexity of device-based sleep data would make 
it difficult to develop integrated functions capable of accurately 
harmonizing sleep research phenotypes [54, 55]. Towards that 
end, we engineered a unique approach to the harmonization of 
polysomnography and polygraphy variables that leveraged the 
degree of specificity afforded by our compositional terminology. 
This approach progressed through the following iterative stages, 
as exemplified by harmonization efforts for sleep-disordered 
breathing variables:

1. Specification of target phenotypes—Candidate phenotypes 
were reviewed to identify commonly used terms (e.g. the 
AHI), as supported by their citation in published guidelines 
and use in the research literature.

2. Characterization of heterogeneity—Data generation and 
acquisition processes were reviewed to determine which 
study-level and variable-level metadata elements con-
tributed most significantly to the heterogeneity between 
related but distinct target phenotypes. Potential sources of 
heterogeneity included sleep acquisition procedures, and 
for hypopnea and apnea terms, included (1) airflow reduc-
tion thresholds, (2) oxygen desaturation thresholds, and (3) 
the presence or absence of arousal(s).

3. Refinement of target phenotypes—Practical considerations 
prompted us to limit the degree of granularity required to 
specify target phenotypes. For example, although we con-
sidered basing definitions on the four level AASM classifi-
cation of sleep apnea monitoring devices, we categorized 
the sleep device types into those that include or do not 
include EEG data. We limited definitions of thresholds of 
flow reduction to levels that could be mapped to specific 
AASM guidelines. By doing so we were able to identify 13 
permutations of sleep-disordered breathing events by com-
bining study types, flow reduction thresholds, and event 
definitions at 3% and 4% oxygen desaturation thresholds 
that we were able to consolidate to generate 7 AHI pheno-
types and 3 REI phenotypes.

4. Mapping compositional tags to target phenotypes—We 
used our compositional terminology scheme to assign 
metadata tags to each phenotype to generate harmonized 
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terms. Checks were conducted to confirm that each 
mapped compositional tag corresponded to a mutually 
exclusive AHI or REI phenotype (Supplementary Figure S2).

5. Identification of candidate variables—Queries were con-
ducted using harmonized terms to identify candidate vari-
ables in each dataset based on mapped compositional tags 
originally assigned during the ingestion and curation of 
each dataset added to the NSRR.

6. Generation of harmonized variables—Each retrieved can-
didate variable was further evaluated to determine the 
degree to which it matched the specification of a har-
monized term. When a candidate variable was deemed 
to be an appropriate match, a new version marked as a 
harmonized variable was added to the dataset with a link 
to the harmonized term that could be used to trigger a 
 cross-cohort query to identify similarly harmonized vari-
ables present in other datasets.

We conduct this review on a regular basis in the course 
of processing and curating datasets added to the NSRR. 
External investigators may also follow this approach for 

determining if selected variables may be candidates for 
harmonization.

Examples of Data Harmonization in NSRR
The following examples show the results of harmonization efforts 
to describe variation in sleep metrics across age and gender. 
Overnight EEG data from a total 25 678 studies (14 618 male, 11 
060 female), ages 2.5–90 years, were reprocessed using the Luna 
pipeline, harmonizing channel labels, polarity, removing artifact, 
and resampling at standard rates. Figure 5a and b shows the clear 
reduction in N3 sleep density and increase in sleep fragmentation 
index across age, and evident gender differences.

In contrast, Figure 6 shows the results of efforts to har-
monize the AHI. Data mapping efforts allowed unambiguous 
assignment of specific definitions across key variations in AHI 
values, demonstrating that at any age, AHI values are con-
siderably highest when the 1999 Chicago criteria are applied 
(including hypopneas with a 50% reduction in amplitude with 
a 3% desaturation or arousal), and lowest for the AASM 2015 
definition (which requires a 30% amplitude reduction and 4% 
desaturation to accompany hypopneas). Unlike the approach 

Figure 5. (a) and (b) Sleep architecture across the lifespan and by gender in NSRR. (a) Stage N3 density (minutes of N3 sleep divided by total sleep 
period time, SPT); (b) sleep fragmentation index. Data from 26 673 individuals selected from the NSRR with polysomnography data, aged 2.5–90 years 
(57% male), from 13 cohorts (APPLES, CCSHS, CFS, CHAT, MESA, MNC, MrOS, MSP, NCHSDB, SHHS, SOF, STAGES, and WSC). Blue: male. Red: female.
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to analysis of the EEG data where the raw data were directly 
reprocessed, the AHI metrics were based on events that were 
annotated by the data contributors. In many datasets, events 
were annotated with a restricted number of features (e.g. hypo-
pneas only identified for a fixed desaturation), limiting the 
ability to generate alternative metrics that mapped to a single 
common definition, or to key definitions used over time. Future 
harmonization will benefit from directly reprocessing the raw 
respiratory signals and applying standardized automated algo-
rithms to all datasets.

Needs and Future Directions
The impact of the data, tools, and outreach efforts of the NSRR 
on sleep and circadian research is evident by its support of thou-
sands of researchers across a wide spectrum of backgrounds and 

from around the world, its contributions to hundreds of manu-
scripts, its role in the development of numerous novel sleep scor-
ing algorithms and scientific discovery of novel sleep predictors, 
and its support of early as well as later stage investigators who 
have accessed NSRR data to generate preliminary data for grant 
applications or have used NSRR data as primary data for aca-
demic purposes. There are, however, several areas that can be 
enhanced:

• Education—Informatics and data sharing policies are each 
rapidly evolving. Ongoing education and support of a range 
of stakeholders is needed to ensure there is understand-
ing of the value and approaches for collecting, archiving, 
labeling, sharing, and analyzing the rich sleep and circa-
dian data increasingly generated by sleep laboratories and 
research studies.
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Figure 6. Variations of alternative mapped apnea hypopnea indices, by age, n = 18 287. Mean AHI values by age group, according to four mapped 
alternative definitions of the AHI, using data from 13 cohorts (ABC, APPLES, BestAIR, CFS, CHAT, HomePAP, MESA, MrOS, MSP, NuMom2b, SHHS, 
SOF, and WSC): nsrr_ahi_chicago1999: apnea-hypopnea index (all apneas + hypopneas with > 50% flow reduction or discernible flow reduction 
with >=3% desat or arousal) per hour of sleep. Harmonized by the NSRR team. The definition of hypopnea events is consistent with the following 
clinical guidelines: American Academy of Sleep Medicine (AASM) Chicago 1999 standard. nsrr_ahi_hp3r_aasm15: Apnea-Hypopnea Index (all 
apneas + hypopneas with >=30% nasal cannula [or alternative sensor] reduction and >= 3% oxygen desaturation or with arousal) per hour of sleep. 
Harmonized by the NSRR team. The definition for hypopneas is consistent with the following clinical guidelines: (1) American Academy of Sleep 
Medicine (AASM) 2007 Manual (2012 update) (recommended), and (2) American Academy of Sleep Medicine (AASM) 2015 (recommended). nsrr_ahi_
hp4r: Apnea-Hypopnea Index (all apneas + hypopneas with >= 4% oxygen desaturation or with arousal) per hour of sleep. Harmonized by the NSRR 
team. nsrr_ahi_hp4u_aasm15: Apnea-Hypopnea Index (all apneas + hypopneas with >=30% nasal cannula [or alternative sensor] reduction with >= 
4% oxygen desaturation) per hour of sleep. Harmonized by the NSRR team. The definition of hypopnea events is consistent with the following clinical 
guidelines: (1) AASM 2012 update (alternative) and (2) AASM 2015 (acceptable).
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• Data coverage—While the NSRR continues to ingest 
data and is expanding to include data from animal and 
circadian study designs, there are data gaps. Notably, the 
data within NSRR are limited to those elements that con-
tributors are willing to share. Some data are not shared 
due to proprietary concerns by contributors; in other cases, 
data other than the sleep data had been made available to 
other repositories (e.g. BioLINCC) and are only accessible 
by securing permissions for those repositories to cross-link 
with the data within the NSRR. There are continued chal-
lenges in harmonizing sleep-related data that are collected 
without strong standardization. The harmonization work 
can be labor intensive (e.g. relying on vetting of potentially 
harmonizable variables to identify common terms or using 
compositional terminology components to generate accu-
rate and matchable labels). Implementation of NIH’s Data 
Management and Sharing Policy that requires the scope 
and format of data sharing to be described as part of the 
grant submission process should both facilitate and incen-
tivize the sharing of larger amounts of data. The NSRR 
is in the process of depositing data into NHBLI’s BioData 
Catalyst repository, which will make cross-linking with 
other data, including genetic data, in overlapping cohorts 
easier. Ultimately, the constraints on big data opportuni-
ties for the sleep and circadian field relate to availability of 
sleep and circadian data linked to the broad range of social 
determinants of health, clinical, outcome, and molecular 
data needed to drive transformative science. NIH and other 
sponsors need to periodically assess the availability of such 
data and invest in prospective data collection to fill critical 
gaps.

• Lack of standards/burden of data harmonization and map-
ping procedures—This paper discussed multiple sources 
of heterogeneity inherent in current clinical and research 
data collection protocols. While the NSRR developed inno-
vative approaches to reducing or addressing this heter-
ogeneity, the sleep and circadian fields need to push for 
more rigorous up-front standardization of data collection 
and archival procedures, event and disorder definitions, 
and metadata, that in aggregate will simplify data sharing 
efforts and improve the quality of harmonized datasets. 
Adoption and dissemination of core sleep and circadian 
Common Data Elements will require collaboration of 
domain experts, informaticians, and clinicians in the 
development of standards, with ongoing work to ensure 
that such standards are updated and used appropriately. 
Adoption of standards needs to expand beyond event defi-
nitions and disease definitions to include standardization 
across multiple levels of data collection, including nomen-
clature, pre-processing steps, numerical standards and 
data, and metadata formats. Professional societies may 
recommend that research data utilize a set of standards 
that includes machine readable formats. Societies repre-
senting clinical sleep medicine can make sleep laboratory 
accreditation dependent on use of data standards to allow 
data to be readily queried as well as shared (after appropri-
ate de-identification).

• Open-source tools—reproducible research rests on a pillar 
of shared, documented, and robust computational tools. 
There needs to be clarity regarding how to balance issues 
related to intellectual property, commercialization, and 
scientific rigor. Requiring investigators to share code (or 

predictive models) will improve both the rigor and trans-
parency of research. However, there is wide variability in 
how code is documented and updated. Often there is no 
ongoing support to ensure the developers can respond to 
user questions or identified bugs.

• Emergence of “profit-based” or restricted data reposito-
ries—Finally, much of the rapid rise in web-based commer-
cial entities (Google, Apple, etc.) is based on the commercial 
value of aggregating and leveraging individual-level data. 
Sleep data have attracted commercial interest due to the 
potential for those data to inform: (1) the targeted devel-
opment of products aimed at a $40 billion “sleep-health/
wellness” market; (2) development of commercial algo-
rithms for improved quantification of sleep-related param-
eters and sleep-related devices; and (3) development of 
 sleep-focused interventions. In addition to the ethical 
and privacy concerns related to the commercial use of 
 individual-level data, these commercial interests may drive 
the development of restricted sleep data repositories that 
may compete with more generally accessible repositories 
and limit the community’s ability to engage in open discov-
ery and competition. Non-commercial but restricted access 
to aggregated data also occurs when academic groups pre-
vent data sharing to protect their own intellectual property, 
and similarly constrains the potential of “big” sleep data 
analyses as an open, community knowledge source.

Summary
While there are many challenges for sleep and circadian data 
sharing and harmonization, work by the NSRR suggests the util-
ity of several novel approaches and demonstrates that heteroge-
nous and valuable data can be readily shared to support a wide 
range of research and algorithmic development. Moreover, much 
of the work related to data harmonization can inform data shar-
ing, metadata, and Common Data Element development in other 
domains. With further data sharing and standardization, the field 
will move closer to its vision of utilizing large datasets and power-
ful tools including machine learning to enhance scientific discov-
ery and productivity, statistical power, rigor, and reproducibility, 
to ensure that the discoveries for sleep and circadian science are 
applicable to diverse populations. While community-oriented 
efforts such as those pioneered by the NSRR progress, there also 
will be a need to carefully consider the roles of restricted com-
mercial and non-commercial efforts in complementing or com-
peting with “open” data sharing efforts, including NIH’s roles in 
supporting these efforts, and the types of permissions and safe-
guards needed to ensure ethical, privacy and intellectual prop-
erty needs are appropriately addressed.
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