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Abstract

IMPORTANCE Good sleep is essential for health, yet associations between sleep and dementia risk
remain incompletely understood. The Sleep and Dementia Consortium was established to study
associations between polysomnography (PSG)–derived sleep and the risk of dementia and related
cognitive and brain magnetic resonance imaging endophenotypes.

OBJECTIVE To investigate association of sleep architecture and obstructive sleep apnea (OSA) with
cognitive function in the Sleep and Dementia Consortium.

DESIGN, SETTING, AND PARTICIPANTS The Sleep and Dementia Consortium curated data from 5
population-based cohorts across the US with methodologically consistent, overnight, home-based
type II PSG and neuropsychological assessments over 5 years of follow-up: the Atherosclerosis Risk in
Communities study, Cardiovascular Health Study, Framingham Heart Study (FHS), Osteoporotic
Fractures in Men Study, and Study of Osteoporotic Fractures. Sleep metrics were harmonized
centrally and then distributed to participating cohorts for cohort-specific analysis using linear
regression; study-level estimates were pooled in random effects meta-analyses. Results were
adjusted for demographic variables, the time between PSG and neuropsychological assessment (0-5
years), body mass index, antidepressant use, and sedative use. There were 5946 participants
included in the pooled analyses without stroke or dementia. Data were analyzed from March 2020
to June 2023.

EXPOSURES Measures of sleep architecture and OSA derived from in-home PSG.

MAIN OUTCOMES AND MEASURES The main outcomes were global cognitive composite z scores
derived from principal component analysis, with cognitive domains investigated as secondary
outcomes. Higher scores indicated better performance.

RESULTS Across cohorts, 5946 adults (1875 females [31.5%]; mean age range, 58-89 years) were
included. The median (IQR) wake after sleep onset time ranged from 44 (27-73) to 101 (66-147)
minutes, and the prevalence of moderate to severe OSA ranged from 16.9% to 28.9%. Across
cohorts, higher sleep maintenance efficiency (pooled β per 1% increase, 0.08; 95% CI, 0.03 to 0.14;
P < .01) and lower wake after sleep onset (pooled β per 1-min increase, −0.07; 95% CI, −0.13 to −0.01
per 1-min increase; P = .02) were associated with better global cognition. Mild to severe OSA (apnea-
hypopnea index [AHI] �5) was associated with poorer global cognition (pooled β, −0.06; 95% CI,
−0.11 to −0.01; P = .01) vs AHI less than 5; comparable results were found for moderate to severe OSA
(pooled β, −0.06; 95% CI, −0.11 to −0.01; P = .02) vs AHI less than 5. Differences in sleep stages were
not associated with cognition.
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Abstract (continued)

CONCLUSIONS AND RELEVANCE This study found that better sleep consolidation and the absence
of OSA were associated with better global cognition over 5 years of follow-up. These findings suggest
that the role of interventions to improve sleep for maintaining cognitive function requires
investigation.
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Introduction

Sleep of sufficient quality and duration may be associated with decreased risk of dementia through
several mechanisms, including augmenting the glymphatic clearance of Alzheimer disease
proteins,1,2 facilitating memory consolidation and synaptic remodeling,3-6 and reduced risk of
cardiometabolic diseases and vascular brain injury,7,8 which are known factors associated with
dementia risk.9-11 However, the association between sleep and cognitive impairment remains
equivocal; poor sleep was not among 12 modifiable risk factors outlined in the Lancet Commission on
dementia prevention.11

Much of the uncertainty surrounding associations between sleep and dementia arises from a
paucity of data with long follow-up durations, objective measures of sleep, or consistent data formats
and analysis methods to facilitate pooling and sharing of data across studies.12 To address this gap,
we created the Sleep and Dementia Consortium to advance sleep research to inform new strategies
for dementia prevention.

This article aimed to investigate associations of sleep macroarchitecture and obstructive sleep
apnea (OSA) with cognition over 5 years of follow-up across participating cohorts of the Sleep and
Dementia Consortium. By combining across studies, this analysis attempted to address several
unanswered questions, including which sleep variables are most robustly associated with cognition,
what cognitive domains are most sensitive to differences in sleep, and whether there are systematic
differences by key variable, such as sex and APOE genotype. Based on prior work, it was
hypothesized that a greater percentage of time in rapid eye movement (REM) sleep and higher sleep
consolidation would be associated with better cognition.13-16

Methods

All participants in this cohort study provided written informed consent before study
commencement. Each cohort obtained institutional review board (IRB) approval at its respective
institution, and this study was approved by the University of Texas Health Science Center at San
Antonio IRB. This report follows the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline for cohort studies.

Study Design
The Sleep and Dementia Consortium comprises 5 prospective community-based cohorts that have
performed methodologically consistent, overnight, home-based polysomnography (PSG) and
neurocognitive assessments. Given that this is the first study from the Sleep and Dementia
Consortium, a broad overview, including its design, goals, participating cohorts, and methods is
shown in the eMethods in Supplement 1. For this analysis, we investigated associations between
baseline sleep metrics and cognitive function measured within the subsequent 5 years. Sleep
measures from the baseline PSG were used from each cohort. The timing of assessments is shown in
the eMethods in Supplement 1. Cohorts include the Atherosclerosis Risk in Communities (ARIC)
study, Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), Osteoporotic Fractures in
Men Study (MrOS), and Study of Osteoporotic Fractures (SOF).
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Participants
Enrollment and cohort design methods have been published previously (ARIC,17-19 CHS,20-22

FHS,23,24 MrOS,25,26 and SOF27-29) and are summarized in the eMethods in Supplement 1. This
analysis was limited to participants aged at least 45 years who were free of dementia and stroke and
who had baseline PSG and cognitive testing within 5 years after PSG. To reduce the influence of
potentially spurious data, participants with less than 180 minutes of total sleep time or less than 1
minute of REM sleep were excluded. Sample selection across cohorts is shown in eTable 1 in
Supplement 1.

Sleep Assessments
Participants in the ARIC, CHS, and FHS completed in-home PSG as part of the Sleep Heart Health
Study, a consortium of prospective cohort studies established to examine sleep disorders as risk
factors associated with cardiovascular disease and stroke.30 All cohorts used a standardized protocol
to complete overnight, home-based type II PSGs between 1995 and 1998. Participants from each
cohort were invited to complete an initial home-based PSG using the Compumedics P Series System
(Abbotsford). Electroencephalogram (C3A2 and C4A1), electrooculogram, electromyogram, thoracic
and abdominal displacement (inductive plethysmography bands), airflow (nasal-oral
thermocouples), finger pulse oximeter, a single bipolar electrocardiogram, body position by a
mercury gauge sensor, and ambient light level were all recorded.

The same central Sleep Reading Center oversaw training, conduct and analysis of all sleep
studies. Methods, including scoring guidelines and reliability, have been previously published.30-32

The ARIC, CHS, and FHS sleep studies were standardized as part of the Sleep Heart Health Study. For
SOF and MrOS, sleep protocols were modeled on the Sleep Heart Health Study, enabling effective
harmonization and cross-study comparison. SOF and MrOS added nasal cannula pressure and
bilateral piezoelectric sensors to detect leg movements. Sleep was scored in 30-second epochs by
trained PSG technicians blinded to other data according to established guidelines (Rechtschaffen and
Kales33 and American Sleep Disorders Association arousal criteria34), with excellent interscorer and
intrascorer reliability on epoch-by-epoch sleep staging (κ statistics >0.80) and respiratory-related
measures.31,32 The following variables were calculated for each participant.

Measures of Sleep Macroarchitecture and Daytime Sleepiness
Stage 1 (N1%), stage 2 (N2%), stage 3 (N3%), and REM (REM%) sleep were defined as the duration
of each sleep stage expressed as a percentage of total sleep time. Wake after sleep onset was defined
as the number of minutes spent awake between sleep onset and offset. Total sleep time was defined
as the number of hours asleep between sleep onset and offset. Sleep maintenance efficiency was
expressed as the ratio of total sleep time to the sleep period (defined as the time between sleep
onset and offset), given as a percentage. The Epworth Sleepiness Scale was used to measure daytime
sleepiness. The ESS is an 8-item questionnaire that measures daytime sleepiness. Each item is scored
on a 4-point scale (response range, 0-3) to examine the likelihood of falling asleep during 8 different
situations. Higher scores indicate higher daytime sleepiness.

Measures of Obstructive Sleep Apnea
The apnea-hypopnea index (AHI) was defined as the number of obstructive sleep apneas (OSAs) plus
the number of hypopneas accompanied by a greater than 30% reduction in airflow and 4% or
greater oxygen desaturation or arousal per hour of sleep. Sleep time with arterial oxygen saturation
less than 90% was defined as the ratio of the number of minutes with arterial oxygen saturation less
than 90% to the total sleep time expressed in hours. Sleep variables were calculated centrally to
ensure consistency of analysis and effective harmonization.
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Cognitive Assessments
The primary outcome was global cognition. Cognitive domain scores were investigated as secondary
outcomes. Units were expressed as z scores, with higher values indicating better performance.

Methods to assess cognition varied across cohorts. Analyses of hundreds of independent data
sets have shown that a single cognitive factor can explain more than 40% of variance across
cognitive test batteries.35 Moreover, performance on any given cognitive test partly depends on a
general cognitive ability.36 Given that all cognitive tests load onto a latent general cognitive ability,
one common approach to estimate general cognitive function is to perform a principal component
analysis of cognitive test scores, extracting the first unrotated component. Thus, even though
cognitive tests differ across cohorts, this approach allows for estimating general cognitive function
across studies. To this end, the investigators have already created a general cognitive score for ARIC,
CHS, and FHS as part of a previous meta-analysis.36

The method involved calculating a general cognitive phenotype from at least 3 different
cognitive tests in each cohort. Multiple outcomes from the same cognitive test were not included in
the computation. Principal component analysis was applied to the cognitive test scores to derive a
general cognitive score by forcing a single-factor solution. The same methods were applied to MrOS
and SOF to generate global cognition across all cohorts. eTable 2 in Supplement 1 provides further
details, including individual tasks used to create the global cognitive composite for each cohort and
their factor loadings. In a secondary analysis, we used a neuropsychological framework to group
cognitive tasks into broad cognitive domains of executive function, attention and processing speed,
verbal learning and memory, language, and visuospatial function. Individual cognitive test outcomes
were converted to z scores based on the cohort-specific sample mean and SD and the mean found
within each domain. The organization of cognitive tests into broad cognitive domains was completed
by iterative consensus among neuropsychologists using a shared neuropsychological framework of
cognitive domains (eTable 3 in Supplement 1). Tasks for which higher scores indicate poorer
performance were reverse-coded such that higher scores always indicated better performance.

Covariates
The following covariates were selected based on expert knowledge and prior literature of known
confounders of sleep and cognition: age (years), age-squared, sex (male and female), education
(<high school [<12 years], high school [12 years], and >high school [>12 years]), the time between PSG
and neuropsychological assessment (years), body mass index (BMI; calculated as weight in kilograms
divided by height in meters squared), antidepressant use (yes vs no), and sedative use (yes vs no).
Covariates were obtained at the time of PSG or the clinic exam closest to the PSG and were included
in all statistical models. To characterize cohorts, data were obtained on clinical characteristics and
demographics, including self-reported race and ethnicity. Sources of race and ethnicity classifications
and available categories varied by study (eMethods in Supplement 1). Analyses in this study were
limited to Black, White, and other race or ethnicity due to data availability. Race and ethnicity
assessments were included in this analysis to determine how representative cohort populations were
of the broader US population.

Statistical Analysis
Table 1 summarizes sleep measures used in analyses. Statistical analysis was performed using SAS
statistical software version 9.4 (SAS Institute) and R statistical software version 4.3.0 (R Project for
Statistical Computing). Associations between each sleep variable and each cognitive outcome were
investigated in separate linear regression, adjusting for covariates. Cohort-specific analyses were
conducted for each cohort with study-level estimates pooled centrally in random effects meta-
analyses using the Der Simonian and Laird inverse-variance method. The Higgins I2 test was used to
test for heterogeneity in effect sizes.37 We did not conduct a meta-analysis of results for the cognitive
domain of language given that only 2 cohorts (CHS and FHS) contributed data. Statistical tests were
2-sided, and results were considered significant if P < .05. Missing data, of which there was little
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(eTable 1 in Supplement 1), were excluded from the analysis. Data were analyzed from March 2020
to June 2023.

We explored effect modification by sex (male vs female), APOE ε4 allele status (carrier vs
noncarrier), and excessive daytime sleepiness (Epworth Sleepiness Scale scores �11 vs <11) for the
primary outcome of global cognition. In the presence of an interaction (P < .05), results were
stratified at each level of the moderating variable. Interaction results were not pooled in a meta-
analysis. Instead, we interpreted patterns that were evident across studies. Sex was not examined as
a moderating variable in MrOS or SOF given that these cohorts were exclusively male and female,
respectively, and APOE genotype was not examined as a moderating variable in SOF given that it was
not available for all participants.

Results

Participant Characteristics
Across cohorts, there were 5946 participants (1875 females [31.5%]; mean age range, 58-89 years at
the time of PSG; 232 Black [3.9%]; 5459 White [91.7%], and 255 other race or ethnicity [4.3%]),
including 1791 participants in ARIC, 701 participants in CHS, 640 participants in FHS, 2619
participants in MrOS, and 195 participants in SOF. Most participants were male given that the large
MrOS study was only in males (Table 2). Overall, 495 participants (8.3%) did not have a high school
degree and 1298 participants (21.8%) reported using sleeping pills regularly.

The percentage of people with at least mild OSA (AHI �5) ranged from 45.2% in the FHS to
63.9% in MrOS (Table 1), reflecting differences in age and sex of these cohorts. Similarly, the
percentage of people with at least moderate OSA (AHI �15) was lowest in the FHS (16.9%) and
highest in MrOS (28.9%). Median sleep efficiency was highest among participants in the FHS and
lowest among participants in MrOS (Table 1). Raw cognitive test means for each cohort are shown in
eTable 4 in Supplement 1.

Table 1. Sleep Characteristics Across Cohorts

Sleep exposure Data manipulationa

Participants, No (%) (N = 5946)b

ARIC (n = 1791) CHS (n = 701) FHS (n = 640) MrOS (n = 2619) SOF (n = 195)
Continuous variables

N1, median (IQR), % Square root 4.6 (2.9-7.0) 4.4 (2.7-6.5) 4.5 (2.6-7.2) 5.8 (4.0-8.5) 4.4 (2.9-6.0)

N2, mean (SD), % NA 55.6 (11.3) 57.4 (12.6) 55.5 (11.1) 62.6 (9.5) 55.8 (11.8)

N3, median (IQR), % Square root 17.9 (9.5-25.7) 16.5 (7.8-26.1) 18.2 (11.0-25.8) 11.0 (3.8-16.7) 18.1(11.4-25.9)

REM, mean (SD), % NA 20.7 (5.8) 19.2 (6.3) 20.7 (5.7) 19.5 (6.4) 19.8 (7.0)

Sleep maintenance
efficiency, median (IQR), %

NA 88.3 (82.0-92.6) 85.4 (77.6-91.2) 89.9 (83.7-93.6) 78.5 (70.3-85.1) 82.6 (73.0-88.3)

Wake after sleep onset,
median (IQR), min

Natural log 49.5 (30.5-77.5) 62.0 (36.0-97.0) 44.0 (27.3-73.0) 101.0 (66.0-147.0) 77.0 (52.0-116.0)

Categorical variables

Mild to severe OSA Dichotomized, apnea hypopnea
index <5 (reference) vs ≥5

800 (49.6) 376 (61.2) 270 (45.2) 1674 (63.9) 110 (56.4)

Moderate to severe OSA Dichotomized, apnea hypopnea
index <15 (reference) vs ≥15

317 (19.6) 159 (25.9) 101 (16.9) 756 (28.9) 39 (20.0)

Sleep time with arterial
oxygen saturation <90%

Dichotomized, <1% (reference)
vs ≥1%

530 (29.6) 274 (39.2) 181 (28.3) 1351 (51.6) 80 (41.03)

Total sleep time Dichotomized, ≤6 h (reference)
vs >6-9 hc

1054 (58.9) 353 (50.4) 424 (66.2) 1334 (50.9) 102 (52.3)

Abbreviations: ARIC, Atherosclerosis Risk in Communities study; CHS, Cardiovascular
Health Study; FHS, Framingham Heart Study; MrOS, Osteoporotic Fractures in Men
Study; N1, stage 1 sleep; N2, stage 2 sleep; N3, stage 3 sleep; NA, not applicable; OSA,
obstructive sleep apnea; REM, rapid eye movement; SOF, Study of Osteoporotic
Fractures.
a For data manipulation used in analysis, original units are presented for continuous

measures.

b Denominators varied by specific variable for each study.
c The first sleep recording in the Sleep Heart Health Study was limited by battery life to

9 hours, meaning sleep durations greater than 9 hours could not be examined
across cohorts.
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Associations Between Sleep Metrics and Global Cognition
Across cohorts, higher sleep maintenance efficiency (pooled β per 1% increase, 0.08; 95% CI, 0.03
to 0.14; P < .01) and lower wake after sleep onset (pooled β per 1-min increase, −0.07 ; 95% CI, −0.13
to −0.01; P = .02) were independently associated with superior global cognition (Figure). Sleep stage
percentages were not associated with global cognition across cohorts, while persons with mild to
severe OSA (AHI �5) displayed poorer global cognitive function vs AHI <5 (pooled β, −0.06; 95% CI,
−0.11 to −0.01; P = .01) (Figure). A comparable outcome was observed for persons with at least
moderate OSA (AHI �15) vs AHI less than 5 (pooled β, −0.06; 95% CI, −0.11 to −0.01; P = .02). Sleep
time with oxygen saturation less than 90% was not associated with global cognitive function.

Associations Between Sleep Metrics and Cognitive Domains
Pooled estimates revealed that short total sleep time was associated with poorer attention and
processing speed (pooled β, 0.07; 95% CI, 0.02-0.11 for total sleep time of >6 hours vs �6 hours;
P < .01) (eTable 5 in Supplement 1). Pooled effects did not show overall associations between sleep
and learning and memory or visuospatial abilities (eTables 6-9 in Supplement 1).

Table 2. Cohort Characteristics

Covariate

Participants, No. (%) (N = 5946)
ARIC
(n = 1791)

CHS
(n = 701)a

FHS
(n = 640)

MrOS
(n = 2619)

SOF
(n = 195)

Age, mean (SD), y 62.4 (5.7) 76.7 (3.7) 58.5 (8.4) 76.2 (5.5) 89.1 (2.9)

Sex

Female 927 (51.8) 408 (58.2) 345 (53.9) 0 (0) 195 (100)

Male 864 (48.2) 293 (41.8) 295 (46.1) 2619 (100) 0 (0)

Self-reported race and ethnicity,
No. (%)b

Black 7 (0.4) 100 (14.3) 54 (8.4) 81 (3.1) 15 (7.7)

White 1778 (99.3) 601 (85.7) 518 (80.9) 2382 (91.0) 179 (91.8)

Other 6 (0.3) 0 (0) 68 (10.6) 156 (5.9) 1 (0.5)

American Indian or
Alaska Native

1 (<0.1) NA 0 (0) 1 (0) NA

Asian 5 (0.3) NA 0 (0) 76 (2.9) 1 (0.5)

Asian Indian or
Pacific Islander

NA NA 22 (3.4) NA NA

Hispanic NA NA 46 (7.2) 48 (1.8) NA

Native Hawaiian or
Pacific Islander

NA NA 0 (0) 3 (0.1) NA

Multiracial or multiethnic NA NA 0 (0) 28(1.1) NA

Education

<High school 185 (10.3) 118 (16.8) 47 (7.4) 114 (4.4) 31 (17.2)

High school 641 (35.8) 394 (56.2) 173 (27.0) 420 (16.0) 89 (49.4)

>High school 965 (53.9) 189 (27.0) 420 (65.6) 2085 (79.6) 60 (33.3)

Time between PSG and cognitive
testing, mean (SD), y

0.3 (0.8) 2.1 (0.6) 3.7 (1.4) 0 (0) 4.63 (0.7)

Systolic BP, mean (SD), mm Hg 121.0 (17.0) 129.6 (18.8) 125.9 (16.7) 126.7 (16.1) 135.8 (16.7)

Hypertension treatment 606 (33.8) 381 (54.4) 158 (24.7) 1735 (66.3) 140 (71.8)

Hypertension 632 (35.3) 392 (55.9) 242 (37.9) 1876 (71.6) 159 (82.0)

Prevalent diabetes 98 (5.5) 78 (11.1) 62 (9.8) 342 (13.1) 18 (9.2)

Prevalent CVD 143 (8.0) 69 (9.8) 42 (6.6) 1032 (39.5) 36 (20.0)

Current smoker 176 (9.8) 38 (5.4) 85 (13.3) 1577 (60.2) 3 (1.5)

BMI, median (IQR) 28.3
(25.3-31.7)

27.4
(25.0-29.8)

27.3
(24.5-30.9)

26.7
(24.6-29.3)

27.8
(25.2-31.3)

Sleeping pill use 434 (24.2) 156 (22.3) 116 (18.4) 541 (20.7) 51 (26.2)

Antidepressant use 128 (7.2) 34 (4.9) 38 (5.9) 192 (7.3) 15 (7.7)

Sedative use 86 (4.8) 42 (6.0) 24 (3.8) 183 (7.0) 28 (14.4)

APOE ε4 carrier 483 (27.0) 162 (23.1) 137 (21.9) 497 (23.6) NA

Abbreviations: ARIC, Atherosclerosis Risk in
Communities study; BMI, body mass index (calculated
as weight in kilograms divided by height in meters
squared); BP, blood pressure; CHS, Cardiovascular
Health Study; CVD, cardiovascular disease; FHS,
Framingham Heart Study; MrOS, Osteoporotic
Fractures in Men Study; NA, not applicable; SOF, Study
of Osteoporotic Fractures.
a Based on the sample of 701 participants with data

available for global cognition. Analysis of domain-
specific scores was based on a subset of this sample
with more extensive cognitive testing (232
participants).

b Race and ethnicity were self-reported and
categorized as Black, White, or other, with other
defined by different cohorts as American Indian or
Alaska Native, Asian, Asian Indian or Pacific Islander,
Hispanic, Native Hawaiian or Pacific Islander, or
multiracial.
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Figure. Pooled Associations Between Each Sleep Measure and Global Cognition
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Exploration of Interaction Associations
In the CHS, the association between REM sleep percentage and global cognition differed by sex, with
a positive association observed in females (β per 1% increase, 0.02; 95% CI, −1.25 to 1.48; P = .01)
and no association observed in men (β per 1% increase, −0.01; 95% CI, −1.66 to 1.54; P = .25; P for
interaction = .01) (eTable 11 in Supplement 1). In the FHS, the association between moderate to
severe OSA (AHI �15 vs <5) and global cognition differed by excessive daytime sleepiness; OSA was
associated with poorer global cognition in persons with (β, −0.54; 95% CI, −0.96 to −0.11; P = .01) but
not those without (β, 0.16; 95% CI, −0.05 to 0.37; P = .14) excessive daytime sleepiness (P for
interaction = .006) (eTable 12 in Supplement 1). All other sleep-cognition associations were similar
across interaction variables (eTables 10-12 in Supplement 1).

Discussion

In this cohort study, we examined associations between sleep and cognition in the Sleep and
Dementia Consortium. Results demonstrated that poorer sleep consolidation and prevalent OSA
were associated with poorer global cognition within 5 years. Sleep stage percentages were not
associated with global cognition across cohorts. We found 1 association between sleep metrics and
individual cognitive domains: normal sleep duration compared with short sleep duration was
associated with better attention and processing speed.

Previous research has found an association between the presence of OSA and poorer
performance across several cognitive domains38,39; however, OSA was associated only with global
cognition in this study. This study’s finding of an association between mild OSA and poorer cognition
in persons who did not present to a sleep clinic is an important observation. Persons with OSA
diagnosed based on incidental findings compared with patients referred clinically for PSG may differ
across several characteristics, including comorbidities, overall dementia risk factor burden, and the
severity of sleep disturbances. Although there are direct (eg, intermittent hypoxia leading to
ischemic brain injury or sleep fragmentation) and indirect (eg, systemic inflammation or
cardiovascular instability) mechanisms that may link OSA with poorer cognition, no conclusions
regarding causation can be made from this observational study.

Findings of associations of sleep quality, sleep consolidation, and normal sleep time (compared
with short sleep time) with better cognition are consistent with similar work that examined sleep
using self-report and actigraphy.13,40-44 The lack of an association between sleep architecture and
verbal learning and memory in our study was interesting given the role of sleep in memory
consolidation.4 However, it should be noted that we did not examine sleep-dependent learning
specifically (ie, the presentation of stimuli and the recall of that stimuli were not separated by an
overnight sleep period). Moreover, the role of sleep in the consolidation of episodic memory may be
greatest in younger adults,45 and this sample comprised middle-aged to older adults.

Previously, we showed that a lower level of REM sleep was associated with cognitive decline in
MrOS14 and a higher risk of incident dementia in the FHS.15 In this study, a higher REM percentage
was associated with better cognition in MrOS; in the FHS, there was no such association. However,
the pooled estimate across cohorts did not show an association between REM percentage and
cognition. Additional analysis in the Sleep and Dementia Consortium with other related outcomes
(eg, risk of incident dementia) may help clarify REM’s role in cognitive aging and dementia.

Considerable interest surrounds the role of N3 sleep in dementia given that glymphatic
clearance is optimized in N3 sleep1 and N3 sleep plays a pivotal role in memory consolidation.4,46

Based on these mechanisms, enhancing slow waves has been proposed as 1 potential therapy for
mitigating cognitive decline.47 However, we did not find an association between differences in N3
percentage and cognitive function, even when examining individual study-level estimates. These
results are consistent with those of several smaller studies in older adults48 and earlier findings from
the FHS and MrOS whereby differences in N3 sleep time or percentage were not associated with
cognition or the risk of incident dementia on follow-up.14-16 It is possible that other sleep stages (eg,
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REM)49 compensate for age-related declines in N3 or that single-night PSG is insufficient to quantify
N3 sleep, which may also reflect increased homeostatic drive after relative sleep deprivation before
the sleep study. Lastly, the association between N3 and cognition may differ by variables not
considered here, such as cognitive status or brain amyloid burden.50 As shown previously, cognition
may be associated with specific features of non-REM sleep, including slow oscillations and spindles,
beyond non-REM macroarchitecture.16

Sleep and cognition are dynamic across the life span. However, it is unclear if there are sensitive
periods in adult life during which good sleep is more critical for preventing late-life cognitive
impairment or whether it is the duration of exposure to suboptimal sleep that is associated with
cognitive outcomes. Cohorts that contributed to the Sleep and Dementia Consortium differed in
population characteristics, including age and sex distributions. This allowed effect sizes to be directly
compared and contrasted across cohorts with these different characteristics. For example,
associations between OSA metrics and global cognition often trended against the expected direction
of associations in the youngest (FHS) and oldest (SOF) cohorts. Many factors may underly
differences in results between studies. However, like many established dementia risk factors,51 sleep
and cognition associations may be dynamic across the life span. Interestingly, we did not find
consistent patterns of interaction associations by sex, APOE ε4 status, or excessive daytime
sleepiness. Thus, associations between sleep and cognition appear to be relatively consistent across
different levels of these variables.

Strengths and Limitations
Strengths of the current study include the large, pooled sample size, objective assessment of sleep
in the participant’s home, and characterization of cognitive domains. A further strength was the
central harmonization of sleep variables and covariates. However, this study is not without
limitations. Sleep and cognition were assessed at 1 time. Furthermore, given that associations
between sleep and brain health are likely bidirectional, longer follow-up durations may be required
to tease apart temporal associations between poor sleep and the development of cognitive
impairment. We plan to address these limitations in future Sleep and Dementia Consortium studies
involving analyses of PSG at 2 times and incident dementia follow-up.

Conclusions

In this study of participants from the Sleep and Dementia Consortium, evidence from multiple
population-based cohorts indicated that better sleep consolidation and the absence of OSA were
associated with superior general cognitive function. No associations were found between sleep stage
percentages and cognition. Moreover, there was little evidence to suggest that sex, APOE ε4, or
excessive daytime sleepiness interacted with associations. With respect to individual cognitive
domains, only short sleep duration was associated with poorer attention and processing speed.
Future Sleep and Dementia Consortium analyses will build upon these findings to further investigate
whether and how poor sleep may be associated with cognitive impairment and dementia.
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